Daniel Ackerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abstract No. 560 Quality of large-volume percutaneous core biopsies of hepatocellular carcinoma for research applications. Journal of Vascular and Interventional Radiology, 2021, 32, S155.	0.5	0
2	Interpretative differences of combined cytogenetic and molecular profiling highlights differences between MRC and ELN classifications of AML. Cancer Genetics, 2021, 256-257, 68-76.	0.4	2
3	Variability in biopsy quality informs translational research applications in hepatocellular carcinoma. Scientific Reports, 2021, 11, 22763.	3.3	3
4	Hyperpolarized Metabolic Imaging Detects Latent Hepatocellular Carcinoma Domains Surviving Locoregional Therapy. Hepatology, 2020, 72, 140-154.	7.3	18
5	Functional Genetic Screening Enables Theranostic Molecular Imaging in Cancer. Clinical Cancer Research, 2020, 26, 4581-4589.	7.0	5
6	Establishment of hepatocellular carcinoma patient-derived xenografts from image-guided percutaneous biopsies. Scientific Reports, 2019, 9, 10546.	3.3	5
7	Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation. Cell Reports, 2018, 24, 2596-2605.e5.	6.4	208
8	Electrolytic ablation enables cancer cell targeting through pH modulation. Communications Biology, 2018, 1, 48.	4.4	19
9	Imaging Cancer Metabolism: Underlying Biology and Emerging Strategies. Journal of Nuclear Medicine, 2018, 59, 1340-1349.	5.0	50
10	Arginase 2 Suppresses Renal Carcinoma Progression via Biosynthetic Cofactor Pyridoxal Phosphate Depletion and Increased Polyamine Toxicity. Cell Metabolism, 2018, 27, 1263-1280.e6.	16.2	85
11	The Implications of CRISPR-Cas9 Genome Editing for IR. Journal of Vascular and Interventional Radiology, 2018, 29, 1264-1267.e1.	0.5	0
12	Abstract 195: Electrochemical treatment produces pH changes in the tumor microenvironment that are toxic to cancer cells. , 2018, , .		0
13	Abstract B33: Assessing the role of DGAT activity on lipid homeostasis and cancer cell survival. , 2016, ,		0
14	HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discovery, 2015, 5, 652-667.	9.4	278
15	Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends in Cell Biology, 2014, 24, 472-478.	7.9	384
16	Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes and Development, 2013, 27, 1115-1131.	5.9	170
17	Insulin/IGF-1 and Hypoxia Signaling Act in Concert to Regulate Iron Homeostasis in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002498.	3.5	55
18	The mystery of <i>C. elegans</i> aging: An emerging role for fat. BioEssays, 2012, 34, 466-471.	2.5	59

DANIEL ACKERMAN

#		IF	CITATIONS
π			CHAHONS
19	Manipulation of in vivo iron levels can alter resistance to oxidative stress without affecting ageing in the nematode C. elegans. Mechanisms of Ageing and Development, 2012, 133, 282-290.	4.6	48
20	Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature, 2011, 477, 482-485.	27.8	574
21	Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radical Biology and Medicine, 2011, 51, 1575-1582.	2.9	122
22	Clustering of Genetically Defined Allele Classes in the <i>Caenorhabditis elegans</i> DAF-2 Insulin/IGF-1 Receptor. Genetics, 2008, 178, 931-946.	2.9	76