Yonggang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055347/publications.pdf

Version: 2024-02-01

		249298	242451
82	2,686	26	47
papers	citations	h-index	g-index
83	83	83	4284
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hippocampal asymmetry of regional development and structural covariance in preterm neonates. Cerebral Cortex, 2022, 32, 4271-4283.	1.6	4
2	Unsupervised Deep Learning for FOD-Based Susceptibility Distortion Correction in Diffusion MRI. IEEE Transactions on Medical Imaging, 2022, 41, 1165-1175.	5.4	8
3	Locus coeruleus integrity is related to tau burden and memory loss in autosomal-dominant Alzheimer's disease. Neurobiology of Aging, 2022, 112, 39-54.	1.5	49
4	Age differences in diffusivity in the locus coeruleus and its ascending noradrenergic tract. Neurolmage, 2022, 251, 119022.	2.1	7
5	The effect of body mass index on hippocampal morphology and memory performance in late childhood and adolescence. Hippocampus, 2021, 31, 189-200.	0.9	10
6	Parallel Transport Tractography. IEEE Transactions on Medical Imaging, 2021, 40, 635-647.	5.4	23
7	Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. Neurolmage, 2021, 230, 117756.	2.1	39
8	Past, present and future role of retinal imaging in neurodegenerative disease. Progress in Retinal and Eye Research, 2021, 83, 100938.	7.3	60
9	Using Fractional Anisotropy Imaging to Detect Mild Cognitive Impairment and Alzheimer's Disease among Mexican Americans and Non-Hispanic Whites: A HABLE Study. Dementia and Geriatric Cognitive Disorders, 2021, 50, 266-273.	0.7	7
10	Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?. Neurolmage, 2021, 243, 118502.	2.1	94
11	The Health & Description of the Health & Properties of the Health & Participant & Participant of the Health & Participant of the Health & Part	1.2	36
12	Retinal Venular Tortuosity Jointly with Retinal Amyloid Burden Correlates with Verbal Memory Loss: A Pilot Study. Cells, 2021, 10, 2926.	1.8	14
13	Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge. Journal of Magnetic Resonance Imaging, 2020, 51, 234-249.	1.9	38
14	Automated Deformation-Based Analysis of 3D Optical Coherence Tomography in Diabetic Retinopathy. IEEE Transactions on Medical Imaging, 2020, 39, 236-245.	5.4	14
15	3D Shape Modeling and Analysis of Retinal Microvasculature in OCT-Angiography Images. IEEE Transactions on Medical Imaging, 2020, 39, 1335-1346.	5.4	45
16	Morphometric development of the human fetal cerebellum during the early second trimester. NeuroImage, 2020, 207, 116372.	2.1	15
17	Groupwise track filtering via iterative message passing and pruning. Neurolmage, 2020, 221, 117147.	2.1	4
18	3D Retinal Vessel Density Mapping With OCT-Angiography. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 3466-3479.	3.9	13

#	Article	lF	Citations
19	Emotional detachment, gait ataxia, and cerebellar dysconnectivity associated with compound heterozygous mutations in the <i>SPG7</i> gene. Neurocase, 2020, 26, 299-304.	0.2	2
20	Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy. IEEE Transactions on Medical Imaging, 2020, 39, 2725-2737.	5.4	29
21	A probabilistic atlas of locus coeruleus pathways to transentorhinal cortex for connectome imaging in Alzheimer's disease. Neurolmage, 2020, 223, 117301.	2.1	24
22	Unsupervised Deep Learning for Susceptibility Distortion Correction in Connectome Imaging. Lecture Notes in Computer Science, 2020, 12267, 302-310.	1.0	2
23	Corrections to "Automated Tortuosity Analysis of Nerve Fibers in Corneal Confocal Microscopy― IEEE Transactions on Medical Imaging, 2020, 39, 3758-3758.	5.4	1
24	FOD-based registration for susceptibility distortion correction in brainstem connectome imaging. Neurolmage, 2019, 202, 116164.	2.1	10
25	Relationship between retinal vessel tortuosity and oxygenation in sickle cell retinopathy. International Journal of Retina and Vitreous, 2019, 5, 47.	0.9	10
26	Limits to anatomical accuracy of diffusion tractography using modern approaches. Neurolmage, 2019, 185, 1-11.	2.1	200
27	Hippocampal Shape Maturation in Childhood and Adolescence. Cerebral Cortex, 2019, 29, 3651-3665.	1.6	23
28	3D Surface-Based Geometric and Topological Quantification of Retinal Microvasculature in OCT-Angiography via Reeb Analysis. Lecture Notes in Computer Science, 2019, , 57-65.	1.0	3
29	Surface-based Tracking of U-fibers in the Superficial White Matter. , 2019, 11766, 538-546.		0
30	When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity. Brain Structure and Function, 2018, 223, 2841-2858.	1.2	63
31	Brain structure differences between <scp>C</scp> hinese and <scp>C</scp> aucasian cohorts: A comprehensive morphometry study. Human Brain Mapping, 2018, 39, 2147-2155.	1.9	62
32	Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace–Beltrami embedding space. Medical Image Analysis, 2018, 46, 189-201.	7.0	14
33	Topological false discovery rates for brain mapping based on signal height. Neurolmage, 2018, 167, 478-487.	2.1	2
34	A probabilistic atlas of human brainstem pathways based on connectome imaging data. NeuroImage, 2018, 169, 227-239.	2.1	71
35	Patch-Based Mapping of Transentorhinal Cortex with a Distributed Atlas. Lecture Notes in Computer Science, 2018, 11072, 689-697.	1.0	2
36	Modeling topographic regularity in structural brain connectivity with application to tractogram filtering. Neurolmage, 2018, 183, 87-98.	2.1	15

3

#	Article	IF	CITATIONS
37	Tracking and validation techniques for topographically organized tractography. NeuroImage, 2018, 181, 64-84.	2.1	21
38	Multivariate Classification of Major Depressive Disorder Using the Effective Connectivity and Functional Connectivity. Frontiers in Neuroscience, 2018, 12, 38.	1.4	47
39	FOD-Based Registration for Susceptibility Distortion Correction in Connectome Imaging. Lecture Notes in Computer Science, 2018, 11083, 11-19.	1.0	2
40	GIFE: Efficient and Robust Group-Wise Isometric Fiber Embedding. Lecture Notes in Computer Science, 2018, 11083, 20-28.	1.0	0
41	Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications. Progress in Retinal and Eye Research, 2017, 60, 66-100.	7.3	675
42	Topographic Regularity for Tract Filtering in Brain Connectivity. Lecture Notes in Computer Science, 2017, 10265, 263-274.	1.0	7
43	Holistic Mapping of Striatum Surfaces in the Laplace-Beltrami Embedding Space. Lecture Notes in Computer Science, 2017, 10433, 21-30.	1.0	2
44	FOD Restoration for Enhanced Mapping ofÂWhite Matter Lesion Connectivity. Lecture Notes in Computer Science, 2017, 10433, 584-592.	1.0	2
45	Kernel-Regularized ICA for Computing Functional Topography from Resting-State fMRI. Lecture Notes in Computer Science, 2017, 10433, 373-381.	1.0	1
46	Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention. Scientific Reports, 2016, 6, 33015.	1.6	9
47	Probabilistic Tractography for Topographically Organized Connectomes. Lecture Notes in Computer Science, 2016, 9900, 201-209.	1.0	11
48	Brainhack: a collaborative workshop for the open neuroscience community. GigaScience, 2016, 5, 16.	3.3	34
49	Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis. Neurolmage, 2016, 125, 767-779.	2.1	50
50	Riemannian Metric Optimization for Connectivity-Driven Surface Mapping. Lecture Notes in Computer Science, 2016, 9900, 228-236.	1.0	6
51	Automated multi-atlas labeling of the fornix and its integrity in alzheimer's disease., 2015, 2015, 140-143.		23
52	Feasibility of Structural and Functional MRI Acquisition with Unpowered Implants in Argus II Retinal Prosthesis Patients: A Case Study. Translational Vision Science and Technology, 2015, 4, 6.	1.1	19
53	Development of the human fetal hippocampal formation during early second trimester. NeuroImage, 2015, 119, 33-43.	2.1	42
54	Fiber Orientation and Compartment Parameter Estimation From Multi-Shell Diffusion Imaging. IEEE Transactions on Medical Imaging, 2015, 34, 2320-2332.	5.4	52

#	Article	IF	CITATIONS
55	Track Filtering via Iterative Correction of TDI Topology. Lecture Notes in Computer Science, 2015, 9349, 20-27.	1.0	4
56	Metric Optimization for Surface Analysis in the Laplace-Beltrami Embedding Space. IEEE Transactions on Medical Imaging, 2014, 33, 1447-1463.	5.4	35
57	Technological Advances in Neuroimaging: Neurosurgical Applications for the Future. World Neurosurgery, 2014, 82, 32-34.	0.7	3
58	Cortical Surface Reconstruction via Unified Reeb Analysis of Geometric and Topological Outliers in Magnetic Resonance Images. IEEE Transactions on Medical Imaging, 2013, 32, 511-530.	5.4	27
59	Labeling white matter tracts in hardi by fusing multiple tract atlases with applications to genetics. , 2013, 2013, 512-515.		22
60	Voxelwise Spectral Diffusional Connectivity and Its Applications to Alzheimer's Disease and Intelligence Prediction. Lecture Notes in Computer Science, 2013, 16, 655-662.	1.0	17
61	Adaptively Constrained Convex Optimization for Accurate Fiber Orientation Estimation with High Order Spherical Harmonics. Lecture Notes in Computer Science, 2013, 16, 485-492.	1.0	6
62	Unified Geometry and Topology Correction for Cortical Surface Reconstruction with Intrinsic Reeb Analysis. Lecture Notes in Computer Science, 2012, 15, 601-608.	1.0	3
63	Automated corpus callosum extraction via Laplace-Beltrami nodal parcellation and intrinsic geodesic curvature flows on surfaces. , $2011, , .$		12
64	3D elastic registration improves HARDI-derived fiber alignment and automated tract clustering. , 2011, , .		5
65	CoRPORATE: Cortical Reconstruction by Pruning Outliers with Reeb Analysis and Topology-Preserving Evolution. Lecture Notes in Computer Science, 2011, 22, 233-244.	1.0	7
66	Conformal Metric Optimization on Surface (CMOS) for Deformation and Mapping in Laplace-Beltrami Embedding Space. Lecture Notes in Computer Science, 2011, 14, 327-334.	1.0	21
67	Robust Surface Reconstruction via Laplace-Beltrami Eigen-Projection and Boundary Deformation. IEEE Transactions on Medical Imaging, 2010, 29, 2009-2022.	5.4	47
68	Metric-induced optimal embedding for intrinsic 3D shape analysis. , 2010, , .		18
69	A Riemannian model of regional degeneration of the hippocampus in Alzheimer's disease. , 2010, , .		1
70	A Narrow-Band Approach for Approximating the Laplace-Beltrami Spectrum of 3D Shapes. , 2010, , .		3
71	Automated Sulci Identification via Intrinsic Modeling of Cortical Anatomy. Lecture Notes in Computer Science, 2010, 13, 49-56.	1.0	7
72	Joint Sulcal Detection on Cortical Surfaces With Graphical Models and Boosted Priors. IEEE Transactions on Medical Imaging, 2009, 28, 361-373.	5.4	28

#	Article	IF	CITATIONS
73	Inverse-Consistent Surface Mapping with Laplace-Beltrami Eigen-Features. Lecture Notes in Computer Science, 2009, 21, 467-478.	1.0	37
74	Cortical Shape Analysis in the Laplace-Beltrami Feature Space. Lecture Notes in Computer Science, 2009, 12, 208-215.	1.0	7
75	Hamilton–Jacobi Skeleton on Cortical Surfaces. IEEE Transactions on Medical Imaging, 2008, 27, 664-673.	5.4	42
76	A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution. IEEE Transactions on Image Processing, 2008, 17, 645-656.	6.0	166
77	Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. , 2008, 2008, 1-7.		37
78	Harmonic Surface Mapping with Laplace-Beltrami Eigenmaps. Lecture Notes in Computer Science, 2008, 11, 147-154.	1.0	21
79	HAMILTON-JACOBI SKELETONS ON CORTICAL SURFACES WITH APPLICATIONS IN CHARACTERIZING THE GYRIFICATION PATTERN INWILLIAMS SYNDROME. , 2007, , .		2
80	Direct mapping of hippocampal surfaces with intrinsic shape context. NeuroImage, 2007, 37, 792-807.	2.1	48
81	Direct cortical mapping via solving partial differential equations on implicit surfaces. Medical Image Analysis, 2007, 11, 207-223.	7.0	34
82	Joint Sulci Detection Using Graphical Models and Boosted Priors. Lecture Notes in Computer Science, 2007, 20, 98-109.	1.0	9