Heather Francis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proliferating Cholangiocytes: A Neuroendocrine Compartment in the Diseased Liver. Gastroenterology, 2007, 132, 415-431.	0.6	264
2	Ductular Reaction in Liver Diseases: Pathological Mechanisms and Translational Significances. Hepatology, 2019, 69, 420-430.	3.6	251
3	Expression of STING Is Increased in Liver Tissues From Patients With NAFLD and Promotes Macrophage-Mediated Hepatic Inflammation and Fibrosis in Mice. Gastroenterology, 2018, 155, 1971-1984.e4.	0.6	234
4	Vascular Endothelial Growth Factor Stimulates Rat Cholangiocyte Proliferation Via an Autocrine Mechanism. Gastroenterology, 2006, 130, 1270-1282.	0.6	188
5	Bile acid interactions with cholangiocytes. World Journal of Gastroenterology, 2006, 12, 3553.	1.4	147
6	Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP ₃ /CaMK I/CREB pathway. American Journal of Physiology - Cell Physiology, 2008, 295, C499-C513.	2.1	125
7	Ursodeoxycholate and tauroursodeoxycholate inhibit cholangiocyte growth and secretion of BDL rats through activation of PKC alpha. Hepatology, 2002, 35, 1041-1052.	3.6	122
8	cAMP stimulates the secretory and proliferative capacity of the rat intrahepatic biliary epithelium through changes in the PKA/Src/MEK/ERK1/2 pathway. Journal of Hepatology, 2004, 41, 528-537.	1.8	110
9	Secretin Stimulates Biliary Cell Proliferation by Regulating Expression of MicroRNA 125b and MicroRNA let7a in Mice. Gastroenterology, 2014, 146, 1795-1808.e12.	0.6	83
10	Kupffer Cells. American Journal of Pathology, 2020, 190, 2185-2193.	1.9	80
11	Knockout of secretin receptor reduces large cholangiocyte hyperplasia in mice with extrahepatic cholestasis induced by bile duct ligation. Hepatology, 2010, 52, 204-214.	3.6	79
12	H3 histamine receptor agonist inhibits biliary growth of BDL rats by downregulation of the cAMP-dependent PKA/ERK1/2/ELK-1 pathway. Laboratory Investigation, 2007, 87, 473-487.	1.7	77
13	Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase–dependent pathway in rats. Gastroenterology, 2002, 123, 1226-1237.	0.6	74
14	Pathogenesis of Kupffer Cells in Cholestatic Liver Injury. American Journal of Pathology, 2016, 186, 2238-2247.	1.9	74
15	Bile acid signaling and biliary functions. Acta Pharmaceutica Sinica B, 2015, 5, 123-128.	5.7	70
16	Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma. Gut, 2012, 61, 753-764.	6.1	69
17	Ca2+-Dependent Cytoprotective Effects of Ursodeoxycholic and Tauroursodeoxycholic Acid on the Biliary Epithelium in a Rat Model of Cholestasis and Loss of Bile Ducts. American Journal of Pathology, 2006, 168, 398-409.	1.9	68
18	Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats. American Journal of Physiology - Renal Physiology, 2006, 291, G307-G317.	1.6	67

#	Article	IF	CITATIONS
19	Substance P increases liver fibrosis by differential changes in senescence of cholangiocytes and hepatic stellate cells. Hepatology, 2017, 66, 528-541.	3.6	67
20	Indole Alleviates Dietâ€Induced Hepatic Steatosis and Inflammation in a Manner Involving Myeloid Cell 6â€Phosphofructoâ€2â€Kinase/Fructoseâ€2,6â€Biphosphatase 3. Hepatology, 2020, 72, 1191-1203.	3.6	67
21	The H4 histamine receptor agonist, clobenpropit, suppresses human cholangiocarcinoma progression by disruption of epithelial mesenchymal transition and tumor metastasis. Hepatology, 2011, 54, 1718-1728.	3.6	66
22	Recent advances in the morphological and functional heterogeneity of the biliary epithelium. Experimental Biology and Medicine, 2013, 238, 549-565.	1.1	64
23	Inhibition of mast cellâ€secreted histamine decreases biliary proliferation and fibrosis in primary sclerosing cholangitis Mdr2â^'/â^' mice. Hepatology, 2016, 64, 1202-1216.	3.6	63
24	Melatonin and circadian rhythms in liver diseases: Functional roles and potential therapies. Journal of Pineal Research, 2020, 68, e12639.	3.4	63
25	Inhibition of Mast Cell-Derived Histamine Decreases Human Cholangiocarcinoma Growth and Differentiation via c-Kit/Stem Cell Factor–Dependent Signaling. American Journal of Pathology, 2016, 186, 123-133.	1.9	61
26	H3 Histamine Receptor–Mediated Activation of Protein Kinase Cα Inhibits the Growth of Cholangiocarcinoma <i>In vitro</i> and <i>In vivo</i> . Molecular Cancer Research, 2009, 7, 1704-1713.	1.5	60
27	Regulation of Cellular Senescence by miR-34a in Alcoholic Liver Injury. American Journal of Pathology, 2017, 187, 2788-2798.	1.9	60
28	Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology, 2018, 68, 48-61.	3.6	57
29	Role of stem cell factor and granulocyte colony-stimulating factor in remodeling during liver regeneration. Hepatology, 2012, 55, 209-221.	3.6	55
30	Melatonin inhibits cholangiocyte hyperplasia in cholestatic rats by interaction with MT1 but not MT2 melatonin receptors. American Journal of Physiology - Renal Physiology, 2011, 301, G634-G643.	1.6	53
31	Bile duct ligation–induced biliary hyperplasia, hepatic injury, and fibrosis are reduced in mast cell–deficient KitWâ€sh mice. Hepatology, 2017, 65, 1991-2004.	3.6	51
32	Blocking H1/H2 histamine receptors inhibits damage/fibrosis in Mdr2–/– mice and human cholangiocarcinoma tumorigenesis. Hepatology, 2018, 68, 1042-1056.	3.6	50
33	Intercellular Communication between Hepatic Cells in Liver Diseases. International Journal of Molecular Sciences, 2019, 20, 2180.	1.8	48
34	Taurocholate prevents the loss of intrahepatic bile ducts due to vagotomy in bile duct-ligated rats. American Journal of Physiology - Renal Physiology, 2003, 284, G837-G852.	1.6	46
35	Prolonged darkness reduces liver fibrosis in a mouse model of primary sclerosing cholangitis by miRâ€200b downâ€regulation. FASEB Journal, 2017, 31, 4305-4324.	0.2	45
36	Forkhead box A2 regulates biliary heterogeneity and senescence during cholestatic liver injury in mice‡. Hepatology, 2017, 65, 544-559.	3.6	43

#	Article	IF	CITATIONS
37	Knockout of secretin receptor reduces biliary damage and liver fibrosis in Mdr2â^'/â^' mice by diminishing senescence of cholangiocytes. Laboratory Investigation, 2018, 98, 1449-1464.	1.7	41
38	Taurocholate feeding prevents CCl ₄ -induced damage of large cholangiocytes through PI3-kinase-dependent mechanism. American Journal of Physiology - Renal Physiology, 2003, 284, G290-G301.	1.6	35
39	Organoids and Spheroids as Models for Studying Cholestatic Liver Injury and Cholangiocarcinoma. Hepatology, 2021, 74, 491-502.	3.6	35
40	Doublecortinâ€Like Kinase Protein 1 in Cholangiocarcinoma: Is This the Biomarker and Target We Have Been Looking For?. Hepatology, 2021, 73, 4-6.	3.6	35
41	Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology, 2021, 74, 2684-2698.	3.6	35
42	The emerging role of mast cells in liver disease. American Journal of Physiology - Renal Physiology, 2017, 313, G89-G101.	1.6	34
43	Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in earlyâ€stage primary biliary cholangitis. FASEB Journal, 2019, 33, 10269-10279.	0.2	32
44	Amelioration of Ductular Reaction by Stem Cell Derived Extracellular Vesicles in MDR2 Knockout Mice via Lethalâ€7 microRNA. Hepatology, 2019, 69, 2562-2578.	3.6	32
45	Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. American Journal of Physiology - Renal Physiology, 2014, 307, G894-G904.	1.6	31
46	The Secretin/Secretin Receptor Axis Modulates Ductular Reaction and Liver Fibrosis through Changes in Transforming Growth Factor-β1–Mediated Biliary Senescence. American Journal of Pathology, 2018, 188, 2264-2280.	1.9	31
47	The emerging role of cellular senescence in renal diseases. Journal of Cellular and Molecular Medicine, 2020, 24, 2087-2097.	1.6	31
48	The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. Journal of Pineal Research, 2021, 70, e12699.	3.4	31
49	Knockout of l-Histidine Decarboxylase Prevents Cholangiocyte Damage and Hepatic Fibrosis in Mice Subjected to High-Fat Diet Feeding via Disrupted Histamine/Leptin Signaling. American Journal of Pathology, 2018, 188, 600-615.	1.9	30
50	Mast Cells Induce Ductular Reaction Mimicking Liver Injury in Mice Through Mast Cell–Derived Transforming Growth Factor Beta 1 Signaling. Hepatology, 2021, 73, 2397-2410.	3.6	30
51	Ursodeoxycholate inhibits mast cell activation and reverses biliary injury and fibrosis in Mdr2â^'/â^' mice and human primary sclerosing cholangitis. Laboratory Investigation, 2018, 98, 1465-1477.	1.7	29
52	Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2â^'/â^' mouse model of primary sclerosing cholangitis (PSC). EBioMedicine, 2019, 48, 130-142.	2.7	29
53	Histamine and histamine receptor regulation of gastrointestinal cancers. Translational Gastrointestinal Cancer, 2012, 1, 215-227.	3.0	27
54	Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2â^'/â^' mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165557.	1.8	25

#	Article	IF	CITATIONS
55	Cholangiocarcinoma: novel therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 345-357.	1.5	25
56	Mast Cells Promote Nonalcoholic Fatty Liver Disease Phenotypes and Microvesicular Steatosis in Mice Fed a Western Diet. Hepatology, 2021, 74, 164-182.	3.6	25
57	The Apelin–Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology, 2021, 73, 2411-2428.	3.6	24
58	Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury. Cells, 2021, 10, 2129.	1.8	24
59	Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidaseâ€A/5â€Hydroxytryptamine/5â€Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis. Hepatology, 2020, 71, 990-1008.	3.6	23
60	Bile Acid Receptor Therapeutics Effects on Chronic Liver Diseases. Frontiers in Medicine, 2020, 7, 15.	1.2	23
61	Isolation and characterization of hepatic mast cells from cholestatic rats. Laboratory Investigation, 2016, 96, 1198-1210.	1.7	22
62	Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe?. International Journal of Molecular Sciences, 2019, 20, 1869.	1.8	21
63	Knockout of histidine decarboxylase decreases bile duct ligation-induced biliary hyperplasia via downregulation of the histidine decarboxylase/VEGF axis through PKA-ERK1/2 signaling. American Journal of Physiology - Renal Physiology, 2014, 307, G813-G823.	1.6	20
64	Molecular mechanisms of stem cell therapy in alcoholic liver disease. Digestive and Liver Disease, 2014, 46, 391-397.	0.4	20
65	Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 [/] Mouse Model of Primary Sclerosing Cholangitis. Gene Expression, 2020, 20, 89-103.	0.5	20
66	Vitamin D and GI cancers: shedding some light on dark diseases. Annals of Translational Medicine, 2014, 2, 9.	0.7	20
67	Histamine regulation of biliary proliferation. Journal of Hepatology, 2012, 56, 1204-1206.	1.8	19
68	Gonadotropin-Releasing Hormone Stimulates Biliary Proliferation by Paracrine/Autocrine Mechanisms. American Journal of Pathology, 2015, 185, 1061-1072.	1.9	18
69	Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2019, 23, 461-472.	1.5	18
70	Pinealectomy or light exposure exacerbates biliary damage and liver fibrosis in cholestatic rats through decreased melatonin synthesis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1525-1539.	1.8	18
71	Prolonged intake of desloratadine: mesenteric lymphatic vessel dysfunction and development of obesity/metabolic syndrome. American Journal of Physiology - Renal Physiology, 2019, 316, G217-G227.	1.6	18
72	Functional Role of the Secretin/Secretin Receptor Signaling During Cholestatic Liver Injury. Hepatology, 2020, 72, 2219-2227.	3.6	18

#	Article	IF	CITATIONS
73	Biliary damage and liver fibrosis are ameliorated in a novel mouse model lacking l-histidine decarboxylase/histamine signaling. Laboratory Investigation, 2020, 100, 837-848.	1.7	18
74	Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatology Communications, 2021, 5, 1125-1137.	2.0	18
75	The Functional Roles of Immune Cells in Primary Liver Cancer. American Journal of Pathology, 2022, 192, 826-836.	1.9	17
76	Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology, 2021, 74, 1845-1863.	3.6	16
77	The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expression, 2020, 20, 77-88.	0.5	16
78	Taurocholic acid prevents biliary damage induced by hepatic artery ligation in cholestatic rats. Digestive and Liver Disease, 2010, 42, 709-717.	0.4	15
79	Methionine- and Choline-Deficient Diet–Induced Nonalcoholic Steatohepatitis Is Associated with Increased Intestinal Inflammation. American Journal of Pathology, 2021, 191, 1743-1753.	1.9	15
80	Biliary Epithelial Senescence in Liver Disease: There Will Be SASP. Frontiers in Molecular Biosciences, 2021, 8, 803098.	1.6	15
81	Knockdown of Hepatic Gonadotropin-Releasing Hormone by Vivo-Morpholino Decreases Liver Fibrosis in Multidrug Resistance Gene 2 Knockout Mice by Down-Regulation of miR-200b. American Journal of Pathology, 2017, 187, 1551-1565.	1.9	14
82	Knockout of α-calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes. Laboratory Investigation, 2019, 99, 764-776.	1.7	14
83	Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. Laboratory Investigation, 2021, 101, 328-340.	1.7	14
84	Amelioration of Large Bile Duct Damage by Histamine-2 Receptor Vivo-Morpholino Treatment. American Journal of Pathology, 2020, 190, 1018-1029.	1.9	13
85	Feedback Signaling between Cholangiopathies, Ductular Reaction, and Non-Alcoholic Fatty Liver Disease. Cells, 2021, 10, 2072.	1.8	13
86	Possible application of melatonin treatment in human diseases of the biliary tract. American Journal of Physiology - Renal Physiology, 2019, 317, G651-G660.	1.6	11
87	Development and functional characterization of extrahepatic cholangiocyte lines from normal rats. Digestive and Liver Disease, 2015, 47, 964-972.	0.4	10
88	Cholangiocarcinoma: bridging the translational gap from preclinical to clinical development and implications for future therapy. Expert Opinion on Investigational Drugs, 2021, 30, 365-375.	1.9	10
89	Knockout of the Tachykinin Receptor 1 in the Mdr2â^'/â^' (Abcb4â^'/â^') Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. American Journal of Pathology, 2020, 190, 2251-2266.	1.9	9
90	Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology, 2022, 75, 797-813.	3.6	9

#	Article	IF	CITATIONS
91	Concise Review: Functional Roles and Therapeutic Potentials of Long Non-coding RNAs in Cholangiopathies. Frontiers in Medicine, 2020, 7, 48.	1.2	8
92	Cyclic AMP Signaling in Biliary Proliferation: A Possible Target for Cholangiocarcinoma Treatment?. Cells, 2021, 10, 1692.	1.8	8
93	Histamine regulation of hyperplastic and neoplastic cell growth in cholangiocytes. World Journal of Gastrointestinal Pathophysiology, 2010, 1, 38.	0.5	8
94	Indole supplementation ameliorates MCD-induced NASH in mice. Journal of Nutritional Biochemistry, 2022, 107, 109041.	1.9	8
95	Histamine restores biliary mass following carbon tetrachloride-induced damage in a cholestatic rat model. Digestive and Liver Disease, 2015, 47, 211-217.	0.4	7
96	Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells, 2020, 9, 436.	1.8	7
97	Mast cells in liver disease progression: An update on current studies and implications. Hepatology, 2022, 75, 213-218.	3.6	7
98	Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. American Journal of Physiology - Renal Physiology, 2015, 309, G865-G873.	1.6	6
99	Molecular Mechanisms Linking Risk Factors to Cholangiocarcinoma Development. Cancers, 2022, 14, 1442.	1.7	6
100	The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells, 2022, 11, 1591.	1.8	6
101	Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. American Journal of Pathology, 2022, 192, 1200-1217.	1.9	6
102	Mast cells selectively target large cholangiocytes during biliary injury via H2HRâ€mediated cAMP/pERK1/2 signaling. Hepatology Communications, 2022, 6, 2715-2731.	2.0	6
103	Current Advances in Basic and Translational Research of Cholangiocarcinoma. Cancers, 2021, 13, 3307.	1.7	5
104	Circadian Rhythm and Melatonin in Liver Carcinogenesis: Updates on Current Findings. Critical Reviews in Oncogenesis, 2021, 26, 69-85.	0.2	5
105	Fructose Promotion of Intestinal and Liver Injury: A Sugar by Any Other Name That Isn't So Sweet. Hepatology, 2021, 73, 2092-2094.	3.6	4
106	Emerging Role of Chronic Cannabis Usage and Hyperemesis Syndrome. Southern Medical Journal, 2011, 104, 665.	0.3	4
107	Hepatocyte Autophagy: Maintaining a Toxicâ€Free Environment. Hepatology, 2020, 72, 371-374.	3.6	3
108	Adipocyte inducible 6-phosphofructo-2-kinase suppresses adipose tissue inflammation and promotes macrophage anti-inflammatory activation. Journal of Nutritional Biochemistry, 2021, 95, 108764.	1.9	3

#	Article	IF	CITATIONS
109	FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2â^'/â^' Mouse Model of Primary Sclerosing Cholangitis. Hepatology Communications, 2022, 6, 1574-1588.	2.0	2
110	Organoid Technology: Are Human Cholangiocyte Organoids Immune Protected?. Transplantation, 2022, 106, e249-e249.	0.5	1
111	Macrophage-Specific SCAP Promotes Liver and Adipose Tissue Damage in a Lean NAFLD Model: Lean, Mean, Proinflammatory Machine. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 236-238.	2.3	1
112	Reply: H3 or H4 histamine receptors: That which contributes to suppressing human cholangiocarcinoma progression still remains to be clarified. Hepatology, 2012, 56, 1183-1183.	3.6	0
113	ASBT Vivoâ€Morpholino Decreases Hepatic Mast Cell, Fibrosis and Biliary Senescence in Mdr2 â€∤―Mice. FASEB Journal, 2021, 35, .	0.2	0
114	Histamine and specific histamine receptors increase normal cholangiocyte growth via differential mechanisms. FASEB Journal, 2010, 24, 1000.3.	0.2	0
115	Functional Role of MicroRNAâ€200 Family in Human Gall Bladder Cancer Stem Cells. FASEB Journal, 2015, 29, 45.7.	0.2	0
116	Mast Cell Signaling Regulates Biliary Farnesoid X Receptor and Apical Sodium Bile Acid Transporter Expression During Cholestatic Liver Injury. FASEB Journal, 2020, 34, 1-1.	0.2	0
117	FGF1 receptor antagonist decreases biliary proliferation, fibrosis, and senescence in a mouse model of chronic cholestasis. FASEB Journal, 2020, 34, 1-1.	0.2	0
118	The protective effects of estrogen on biliary and liver damage are independent of ERâ€Î² signaling in female Mdr2 ^{â€ â€} mice. FASEB Journal, 2022, 36, .	0.2	0
119	Mast Cells Contribute to Hepatic Neurokinin1 Receptor Signaling, Subsequent Biliary Damage and Peribiliary Fibrosis Via TGFâ€i²1 Signaling in MDR2â€i―Mouse Model of Primary Scelrosing Cholangitis. FASEB Journal, 2022, 36, .	0.2	0
120	Conjugated Bile Acids activate Reactive Oxygen Speciesâ€p90RSKâ€Vascular Endothelial Growth Factor Receptor 3 signaling axis to promote lymphangiogenesis. FASEB Journal, 2022, 36, .	0.2	0