Robert M Tighe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4055123/publications.pdf

Version: 2024-02-01

48 papers

1,232 citations

³⁹⁴⁴²¹
19
h-index

33 g-index

53 all docs 53 docs citations

53 times ranked

2670 citing authors

#	Article	IF	CITATIONS
1	Identification of Myeloid Cell Subsets in Murine Lungs Using Flow Cytometry. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 180-189.	2.9	212
2	Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 13-24.	2.9	191
3	Ambient ozone and pulmonary innate immunity. Immunologic Research, 2011, 49, 173-191.	2.9	67
4	Recruited Exudative Macrophages Selectively Produce CXCL10 after Noninfectious Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 781-788.	2.9	57
5	Full Spectrum of LPS Activation in Alveolar Macrophages of Healthy Volunteers by Whole Transcriptomic Profiling. PLoS ONE, 2016, 11, e0159329.	2.5	51
6	TLR5 participates in the TLR4 receptor complex and promotes MyD88-dependent signaling in environmental lung injury. ELife, 2020, 9, .	6.0	51
7	Improving the Quality and Reproducibility of Flow Cytometry in the Lung. An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 150-161.	2.9	49
8	Specialized Pro-Resolving Lipid Mediators Regulate Ozone-Induced Pulmonary and Systemic Inflammation. Toxicological Sciences, 2018, 163, 466-477.	3.1	42
9	Arginase 1 Deficiency in Monocytes/Macrophages Upregulates Inducible Nitric Oxide Synthase To Promote Cutaneous Contact Hypersensitivity. Journal of Immunology, 2017, 199, 1827-1834.	0.8	39
10	Sex Modifies Acute Ozone-Mediated Airway Physiologic Responses. Toxicological Sciences, 2019, 169, 499-510.	3.1	37
11	Ozone Inhalation Promotes CX3CR1-Dependent Maturation of Resident Lung Macrophages That Limit Oxidative Stress and Inflammation. Journal of Immunology, 2011, 187, 4800-4808.	0.8	36
12	Hyaluronan interactions with innate immunity in lung biology. Matrix Biology, 2019, 78-79, 84-99.	3.6	34
13	Euthanasia- and Lavage-mediated Effects on Bronchoalveolar Measures of Lung Injury and Inflammation. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 257-266.	2.9	32
14	An IL-9–pulmonary macrophage axis defines the allergic lung inflammatory environment. Science Immunology, 2022, 7, eabi9768.	11.9	29
15	Management of Idiopathic Pulmonary Fibrosis. Annals of Pharmacotherapy, 2019, 53, 1238-1248.	1.9	27
16	Sex Differences in Pulmonary Eicosanoids and Specialized Pro-Resolving Mediators in Response to Ozone Exposure. Toxicological Sciences, 2021, 183, 170-183.	3.1	25
17	Genes of Innate Immunity and the Biological Response to Inhaled Ozone. Journal of Biochemical and Molecular Toxicology, 2013, 27, 3-16.	3.0	24
18	Using hyperpolarized ¹²⁹ Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity. Journal of Applied Physiology, 2021, 130, 1398-1409.	2.5	23

#	Article	IF	CITATIONS
19	129Xenon Gas Exchange Magnetic Resonance Imaging as a Potential Prognostic Marker for Progression of Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 2020, 17, 121-125.	3.2	22
20	Ozone primes alveolar macrophage–derived innate immunity in healthy human subjects. Journal of Allergy and Clinical Immunology, 2016, 138, 1213-1215.e1.	2.9	13
21	Silica Exposure Differentially Modulates Autoimmunity in Lupus Strains and Autoantibody Transgenic Mice. Frontiers in Immunology, 2019, 10, 2336.	4.8	12
22	Repetitive Ozone Exposures and Evaluation of Pulmonary Inflammation and Remodeling in Diabetic Mouse Strains. Environmental Health Perspectives, 2020, 128, 117009.	6.0	11
23	Hyperpolarized ¹²⁹ Xe MRI and Spectroscopy of Gas-Exchange Abnormalities in Nonspecific Interstitial Pneumonia. Radiology, 2021, 301, 211-220.	7.3	11
24	Mouse pulmonary interstitial macrophages mediate the pro-tumorigenic effects of IL-9. Nature Communications, 2022, 13 , .	12.8	11
25	Effect of the <i>S</i> à€nitrosoglutathione reductase inhibitor N6022 on bronchial hyperreactivity in asthma. Immunity, Inflammation and Disease, 2018, 6, 322-331.	2.7	10
26	Physiologic response to chronic house dust mite exposure in mice is dependent on lot characteristics. Journal of Allergy and Clinical Immunology, 2019, 144, 1428-1432.e8.	2.9	10
27	Scavenger Receptor BI Attenuates IL-17A–Dependent Neutrophilic Inflammation in Asthma. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 698-708.	2.9	10
28	Role of Innate Immune System in Environmental Lung Diseases. Current Allergy and Asthma Reports, 2021, 21, 34.	5.3	9
29	Immediate Release of Gastrin-Releasing Peptide Mediates Delayed Radiation-Induced Pulmonary Fibrosis. American Journal of Pathology, 2019, 189, 1029-1040.	3.8	8
30	Life at the Editorial "COVID Frontline― The American Thoracic Society Journal Family. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1457-1459.	5.6	8
31	Isolation and Characterization of Human Lung Myeloid Cells. Methods in Molecular Biology, 2018, 1809, 111-119.	0.9	7
32	Interstitial lung disease in a veterans affairs regional network; a retrospective cohort study. PLoS ONE, 2021, 16, e0247316.	2.5	7
33	A novel role for primary cilia in airway remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L328-L338.	2.9	5
34	The environment shapes swine lung bacterial communities. Science of the Total Environment, 2021, 758, 143623.	8.0	5
35	Wood smoke particle exposure in mice reduces the severity of influenza infection. Toxicology and Applied Pharmacology, 2021, 426, 115645.	2.8	5
36	Extracellular Matrix Protein Mindin is Required for the Complete Allergic Response to Fungal-Associated Proteinase. Journal of Allergy & Therapy, 2012, 01, .	0.1	4

#	Article	IF	CITATIONS
37	Uncovering the Epidemiology of Idiopathic Pulmonary Fibrosis in the Veterans Affairs Health System. Annals of the American Thoracic Society, 2022, 19, 161-162.	3.2	4
38	Genetic variation in surfactant protein-A2 alters responses to ozone. PLoS ONE, 2021, 16, e0247504.	2.5	3
39	ATS Core Curriculum 2015. Part I: Adult Pulmonary Medicine. Annals of the American Thoracic Society, 2015, 12, 1387-1397.	3.2	2
40	Air Pollution and Immune Function. Molecular and Integrative Toxicology, 2015, , 289-321.	0.5	2
41	Flow Cytometry for the Immunotoxicologist. Methods in Molecular Biology, 2018, 1803, 183-197.	0.9	2
42	What Is "Normal―When Examining Myeloid Cells in Human Airways?. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 931-932.	5.6	2
43	Ozone-Induced Models of Airway Hyperreactivity and Epithelial Injury. Methods in Molecular Biology, 2022, , 67-81.	0.9	2
44	Inflammation Gets on the Lung's Nerves: IL-17 and Neuroendocrine Cells Mediate Ozone Responses in Obesity. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 284-285.	2.9	1
45	Ozone Responses and Diet: Does Sex Determine the Relationship?. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 409-410.	2.9	1
46	Know Where You Are: Pulmonary Macrophage Locations in the Human Lung. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1169-1170.	5.6	1
47	HIV, Smoking, and COPD: A Case of T Cells Stuck in the Wrong Place?. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 464-465.	2.9	0
48	TLR5 Participates in the TLR4 Receptor Complex and Biases Towards MyD88-Dependent Signaling in Environmental Lung Injury. SSRN Electronic Journal, 0, , .	0.4	0