Yao Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4054995/publications.pdf Version: 2024-02-01

YAO CHEN

#	Article	IF	CITATIONS
1	Covalent organic frameworks for separation applications. Chemical Society Reviews, 2020, 49, 708-735.	38.1	804
2	Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis. Journal of the American Chemical Society, 2011, 133, 10382-10385.	13.7	563
3	Crystal Engineering of an nbo Topology Metal–Organic Framework for Chemical Fixation of CO ₂ under Ambient Conditions. Angewandte Chemie - International Edition, 2014, 53, 2615-2619.	13.8	505
4	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie - International Edition, 2018, 57, 10971-10975.	13.8	365
5	How Can Proteins Enter the Interior of a MOF? Investigation of Cytochrome <i>c</i> Translocation into a MOF Consisting of Mesoporous Cages with Microporous Windows. Journal of the American Chemical Society, 2012, 134, 13188-13191.	13.7	320
6	Toward a Visible Light-Driven Photocatalyst: The Effect of Midgap-States-Induced Energy Gap of Undoped TiO ₂ Nanoparticles. ACS Catalysis, 2015, 5, 327-335.	11.2	244
7	Fabricating Covalent Organic Framework Capsules with Commodious Microenvironment for Enzymes. Journal of the American Chemical Society, 2020, 142, 6675-6681.	13.7	236
8	The recent progress of isoxazole in medicinal chemistry. Bioorganic and Medicinal Chemistry, 2018, 26, 3065-3075.	3.0	233
9	Biomimetic Catalysis of a Porous Iron-Based Metal–Metalloporphyrin Framework. Inorganic Chemistry, 2012, 51, 12600-12602.	4.0	230
10	Recent progress in the identification of selective butyrylcholinesterase inhibitors for Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 132, 294-309.	5.5	229
11	Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications. Coordination Chemistry Reviews, 2019, 384, 90-106.	18.8	220
12	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie - International Edition, 2018, 57, 16754-16759.	13.8	200
13	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie - International Edition, 2020, 59, 3678-3684.	13.8	196
14	Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry, 2012, 51, 9156-9158.	4.0	152
15	Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nature Communications, 2021, 12, 1982.	12.8	147
16	Biomimetic catalysis of metal–organic frameworks. Dalton Transactions, 2016, 45, 9744-9753.	3.3	138
17	Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2018, 158, 463-477.	5.5	136
18	Why Does Enzyme Not Leach from Metal–Organic Frameworks (MOFs)? Unveiling the Interactions between an Enzyme Molecule and a MOF. Inorganic Chemistry, 2014, 53, 10006-10008.	4.0	132

#	Article	lF	CITATIONS
19	Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. Journal of the American Chemical Society, 2022, 144, 5643-5652.	13.7	131
20	Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423, 213485.	18.8	127
21	PolyCOFs: A New Class of Freestanding Responsive Covalent Organic Framework Membranes with High Mechanical Performance. ACS Central Science, 2019, 5, 1352-1359.	11.3	126
22	Self-Healing Hyper-Cross-Linked Metal–Organic Polyhedra (HCMOPs) Membranes with Antimicrobial Activity and Highly Selective Separation Properties. Journal of the American Chemical Society, 2019, 141, 12064-12070.	13.7	124
23	Scalable Room-Temperature Synthesis of Highly Robust Ethane-Selective Metal–Organic Frameworks for Efficient Ethylene Purification. Journal of the American Chemical Society, 2021, 143, 8654-8660.	13.7	124
24	Antibodies@MOFs: An In Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals. Advanced Materials, 2019, 31, e1805148.	21.0	123
25	Fabrication of Robust Covalent Organic Frameworks for Enhanced Visible-Light-Driven H ₂ Evolution. ACS Catalysis, 2021, 11, 2098-2107.	11.2	116
26	<i>In situ</i> construction of hydrazone-linked COF-based core–shell hetero-frameworks for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 7724-7732.	10.3	108
27	Metal–Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. Angewandte Chemie - International Edition, 2020, 59, 16764-16769.	13.8	105
28	Grotthuss Protonâ€Conductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angewandte Chemie - International Edition, 2021, 60, 21838-21845.	13.8	100
29	Fabrication of Lightâ€Triggered Soft Artificial Muscles via a Mixedâ€Matrix Membrane Strategy. Angewandte Chemie - International Edition, 2018, 57, 10192-10196.	13.8	98
30	Soft Porous Crystal Based upon Organic Cages That Exhibit Guest-Induced Breathing and Selective Gas Separation. Journal of the American Chemical Society, 2019, 141, 9408-9414.	13.7	98
31	Microporous lanthanide metal-organic frameworks. Reviews in Inorganic Chemistry, 2012, 32, 81-100.	4.1	96
32	Robust Ultramicroporous Metal–Organic Frameworks with Benchmark Affinity for Acetylene. Angewandte Chemie, 2018, 130, 11137-11141.	2.0	85
33	Photomechanical Organic Crystals as Smart Materials for Advanced Applications. Chemistry - A European Journal, 2019, 25, 5611-5622.	3.3	83
34	Design and application of ionic covalent organic frameworks. Coordination Chemistry Reviews, 2021, 438, 213873.	18.8	80
35	Dual GSK-3β/AChE Inhibitors as a New Strategy for Multitargeting Anti-Alzheimer's Disease Drug Discovery. ACS Medicinal Chemistry Letters, 2018, 9, 171-176.	2.8	76
36	The utility of the template effect in metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 44-68.	18.8	74

#	Article	IF	CITATIONS
37	Nitrogenase-inspired mixed-valence MIL-53(FeII/FeIII) for photocatalytic nitrogen fixation. Chemical Engineering Journal, 2020, 400, 125929.	12.7	70
38	Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2019, 58, 10209-10214.	13.8	69
39	Strategies for Structural Modification of Small Molecules to Improve Blood–Brain Barrier Penetration: A Recent Perspective. Journal of Medicinal Chemistry, 2021, 64, 13152-13173.	6.4	69
40	Peptide-based and small synthetic molecule inhibitors on PD-1/PD-L1 pathway: A new choice for immunotherapy?. European Journal of Medicinal Chemistry, 2019, 161, 378-398.	5.5	66
41	Post-synthetic modifications of metal–organic cages. Nature Reviews Chemistry, 2022, 6, 339-356.	30.2	66
42	Engineering Olefinâ€Linked Covalent Organic Frameworks for Photoenzymatic Reduction of CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	13.8	65
43	Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Applied Catalysis B: Environmental, 2021, 292, 120167.	20.2	64
44	UiO-66: An Advanced Platform for Investigating the Influence of Functionalization in the Adsorption Removal of Pharmaceutical Waste. Inorganic Chemistry, 2019, 58, 8787-8792.	4.0	61
45	Boosting Nitrogen Activation via Bimetallic Organic Frameworks for Photocatalytic Ammonia Synthesis. ACS Catalysis, 2021, 11, 9986-9995.	11.2	61
46	Mimic Carbonic Anhydrase Using Metal–Organic Frameworks for CO ₂ Capture and Conversion. Inorganic Chemistry, 2018, 57, 2169-2174.	4.0	60
47	Proteinâ€Structureâ€Directed Metal–Organic Zeoliteâ€like Networks as Biomacromolecule Carriers. Angewandte Chemie - International Edition, 2020, 59, 6263-6267.	13.8	59
48	Fragment-Based Identification of Influenza Endonuclease Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 6444-6454.	6.4	58
49	Fabrication of Photoresponsive Crystalline Artificial Muscles Based on PEGylated Covalent Organic Framework Membranes. ACS Central Science, 2020, 6, 787-794.	11.3	57
50	Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Advances, 2017, 7, 3429-3438.	3.6	55
51	Rational Fabrication of Crystalline Smart Materials for Rapid Detection and Efficient Removal of Ozone. Angewandte Chemie - International Edition, 2021, 60, 6055-6060.	13.8	55
52	Acetic acid-assisted supramolecular assembly synthesis of porous g-C3N4 hexagonal prism with excellent photocatalytic activity. Applied Surface Science, 2019, 479, 757-764.	6.1	53
53	Synthesis, pharmacology and molecular docking on multifunctional tacrine-ferulic acid hybrids as cholinesterase inhibitors against Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 496-506.	5.2	52
54	Template-Directed Synthesis of Photocatalyst-Encapsulating Metal–Organic Frameworks with Boosted Photocatalytic Activity. ACS Catalysis, 2019, 9, 7486-7493.	11.2	50

#	Article	IF	CITATIONS
55	Fabrication of Moisture-Responsive Crystalline Smart Materials for Water Harvesting and Electricity Transduction. Journal of the American Chemical Society, 2021, 143, 7732-7739.	13.7	49
56	Discovery and Biological Evaluation of a Novel Highly Potent Selective Butyrylcholinsterase Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 10030-10044.	6.4	48
57	Porous metal–organic framework based on a macrocyclic tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm, 2012, 14, 6115.	2.6	47
58	Structure and therapeutic uses of butyrylcholinesterase: Application in detoxification, Alzheimer's disease, and fat metabolism. Medicinal Research Reviews, 2021, 41, 858-901.	10.5	45
59	Spin crossover-macromolecule composite nano film material. Chemical Communications, 2010, 46, 5073.	4.1	41
60	Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. EScience, 2022, 2, 311-318.	41.6	41
61	Fabrication of Large Single Crystals for Platinumâ€Based Linear Polymers with Controlledâ€Release and Photoactuator Performance. Angewandte Chemie - International Edition, 2019, 58, 18634-18640.	13.8	39
62	Combined Intrinsic and Extrinsic Proton Conduction in Robust Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Angewandte Chemie, 2020, 132, 3707-3713.	2.0	39
63	Robust Bimetallic Ultramicroporous Metal–Organic Framework for Separation and Purification of Noble Gases. Inorganic Chemistry, 2020, 59, 4868-4873.	4.0	39
64	Small molecule modulators targeting protein kinase CK1 and CK2. European Journal of Medicinal Chemistry, 2019, 181, 111581.	5.5	38
65	Highly Potent and Selective Butyrylcholinesterase Inhibitors for Cognitive Improvement and Neuroprotection. Journal of Medicinal Chemistry, 2021, 64, 6856-6876.	6.4	38
66	Multi-stepwise charge transfer <i>via</i> MOF@MOF/TiO ₂ dual-heterojunction photocatalysts towards hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 9717-9725.	10.3	37
67	Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. Journal of Medicinal Chemistry, 2015, 58, 4812-4821.	6.4	36
68	One-Pot Fabrication of g-C ₃ N ₄ /MWCNTs Nanocomposites with Superior Visible-Light Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 3679-3687.	3.7	36
69	Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer's disease. RSC Advances, 2017, 7, 33851-33867.	3.6	35
70	Cytochrome P450 and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity. Pediatric Research, 2018, 83, 527-535.	2.3	35
71	The Development of Pharmacophore Modeling: Generation and Recent Applications in Drug Discovery. Current Pharmaceutical Design, 2018, 24, 3424-3439.	1.9	35
72	Synthesis of g-C ₃ N ₄ Nanosheet/TiO ₂ Heterojunctions Inspired by Bioadhesion and Biomineralization Mechanism. Industrial & Engineering Chemistry Research, 2019, 58, 5516-5525.	3.7	35

#	Article	IF	CITATIONS
73	Melt polymerization synthesis of a class of robust self-shaped olefin-linked COF foams as high-efficiency separators. Science China Chemistry, 2022, 65, 1173-1184.	8.2	35
74	Enzyme Immobilization in Porphyrinic Covalent Organic Frameworks for Photoenzymatic Asymmetric Catalysis. ACS Catalysis, 2022, 12, 8259-8268.	11.2	35
75	Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorganic Chemistry, 2019, 93, 103310.	4.1	33
76	Squaramide-decorated covalent organic framework as a new platform for biomimetic hydrogen-bonding organocatalysis. Chemical Communications, 2019, 55, 5423-5426.	4.1	33
77	Co-Based Catalysts Supported on Silica and Carbon Materials: Effect of Support Property on Cobalt Species and Fischer–Tropsch Synthesis Performance. Industrial & Engineering Chemistry Research, 2019, 58, 3459-3467.	3.7	32
78	Synthesis and bioevaluation of new tacrine-cinnamic acid hybrids as cholinesterase inhibitors against Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 290-302.	5.2	31
79	SAR Exploration of Tight-Binding Inhibitors of Influenza Virus PA Endonuclease. Journal of Medicinal Chemistry, 2019, 62, 9438-9449.	6.4	31
80	Therapeutic Agents in Alzheimer's Disease Through a Multi-targetdirected Ligands Strategy: Recent Progress Based on Tacrine Core. Current Topics in Medicinal Chemistry, 2017, 17, 3000-3016.	2.1	31
81	Fabrication of Lightâ€Triggered Soft Artificial Muscles via a Mixedâ€Matrix Membrane Strategy. Angewandte Chemie, 2018, 130, 10349-10353.	2.0	30
82	Investigation of multi-target-directed ligands (MTDLs) with butyrylcholinesterase (BuChE) and indoleamine 2,3-dioxygenase 1 (IDO1) inhibition: The design, synthesis of miconazole analogues targeting Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2018, 26, 1665-1674.	3.0	27
83	Reasonably activating Nrf2: A long-term, effective and controllable strategy for neurodegenerative diseases. European Journal of Medicinal Chemistry, 2020, 185, 111862.	5.5	27
84	Design and application of covalent organic frameworks for ionic conduction. Polymer Chemistry, 2021, 12, 4874-4894.	3.9	27
85	Therapeutic strategies of glioblastoma (CBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharmaceutica Sinica B, 2022, 12, 1781-1804.	12.0	27
86	Investigation of the Mesoporous Metal–Organic Framework as a New Platform To Study the Transport Phenomena of Biomolecules. ACS Applied Materials & Interfaces, 2017, 9, 10874-10881.	8.0	26
87	Molecular Sieving and Direct Visualization of CO ₂ in Binding Pockets of an Ultramicroporous Lanthanide Metal–Organic Framework Platform. ACS Applied Materials & Interfaces, 2019, 11, 23192-23197.	8.0	26
88	p62/SQSTM1, a Central but Unexploited Target: Advances in Its Physiological/Pathogenic Functions and Small Molecular Modulators. Journal of Medicinal Chemistry, 2020, 63, 10135-10157.	6.4	26
89	Efficient propyne/propadiene separation by microporous crystalline physiadsorbents. Nature Communications, 2021, 12, 5768.	12.8	26
90	Quantification of Flavin-containing Monooxygenases 1, 3, and 5 in Human Liver Microsomes by UPLC-MRM-Based Targeted Quantitative Proteomics and Its Application to the Study of Ontogeny. Drug Metabolism and Disposition, 2016, 44, 975-983.	3.3	25

#	Article	IF	CITATIONS
91	Design of Small Molecule Autophagy Modulators: A Promising Druggable Strategy. Journal of Medicinal Chemistry, 2018, 61, 4656-4687.	6.4	25
92	COF-inspired fabrication of two-dimensional polyoxometalate based open frameworks for biomimetic catalysis. Nanoscale, 2020, 12, 21218-21224.	5.6	25
93	Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer's disease: A review (2010–2020). European Journal of Medicinal Chemistry, 2021, 226, 113874.	5.5	25
94	Discovery of new acetylcholinesterase inhibitors with small core structures through shape-based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3442-3446.	2.2	24
95	Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: Discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation. Bioorganic Chemistry, 2019, 85, 117-127.	4.1	24
96	Combined exposure of lead and cadmium leads to the aggravated neurotoxicity through regulating the expression of histone deacetylase 2. Chemosphere, 2020, 252, 126589.	8.2	24
97	Fluorescent and colorimetric dual-response sensor based on copper (II)-decorated graphitic carbon nitride nanosheets for detection of toxic organophosphorus. Food Chemistry, 2021, 345, 128560.	8.2	24
98	Strain improvement of Rhizopus oryzae for over-production of fumaric acid by reducing ethanol synthesis pathway. Korean Journal of Chemical Engineering, 2010, 27, 183-186.	2.7	23
99	Activation of mitochondrial-associated apoptosis signaling pathway and inhibition of PI3K/Akt/mTOR signaling pathway by voacamine suppress breast cancer progression. Phytomedicine, 2022, 99, 154015.	5.3	23
100	Small molecule KDM4s inhibitors as anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 777-793.	5.2	22
101	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie - International Edition, 2021, 60, 14222-14235.	13.8	22
102	A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation. Journal of Materials Chemistry A, 2021, 9, 2850-2856.	10.3	22
103	A Zinc Coordination Complex Mimicking Carbonic Anhydrase for CO ₂ Hydrolysis and Sequestration. Inorganic Chemistry, 2019, 58, 9916-9921.	4.0	21
104	Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Medicinal Chemistry, 2020, 12, 243-267.	2.3	21
105	Proton pump inhibitor ilaprazole suppresses cancer growth by targeting T-cell-originated protein kinase. Oncotarget, 2017, 8, 39143-39153.	1.8	21
106	Ginsenoside Rb1 ameliorates Glycemic Disorder in Mice With High Fat Diet-Induced Obesity via Regulating Gut Microbiota and Amino Acid Metabolism. Frontiers in Pharmacology, 2021, 12, 756491.	3.5	21
107	Structures and luminescent properties of Sm(III) and Dy(III) coordination polymers with 2,4,6-pyridinetricarboxylic acid. Journal of Coordination Chemistry, 2010, 63, 4068-4076.	2.2	20
108	Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. Angewandte Chemie, 2018, 130, 16996-17001.	2.0	20

#	Article	IF	CITATIONS
109	Synthesis of high-efficient g-C3N4/polydopamine/CdS nanophotocatalyst based on bioinspired adhesion and chelation. Materials Research Bulletin, 2020, 131, 110970.	5.2	20
110	Grotthuss Proton onductive Covalent Organic Frameworks for Efficient Proton Pseudocapacitors. Angewandte Chemie, 2021, 133, 22009-22016.	2.0	20
111	Improvement of the enzymatic detoxification activity towards mycotoxins through structure-based engineering. Biotechnology Advances, 2022, 56, 107927.	11.7	20
112	Design, synthesis, <i>inÂvitro</i> and <i>inÂvivo</i> evaluation of benzylpiperidine-linked 1,3-dimethylbenzimidazolinones as cholinesterase inhibitors against Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 330-343.	5.2	19
113	Bioinspired construction of carbonized poly(tannic acid)/g-C3N4 nanorod photocatalysts for organics degradation. Applied Surface Science, 2021, 562, 150256.	6.1	19
114	A novel multi-stage preculture strategy of Rhizopus oryzae ME-F12 for fumaric acid production in a stirred-tank reactor. World Journal of Microbiology and Biotechnology, 2009, 25, 1871-1876.	3.6	18
115	Identification of 4-aminoquinoline core for the design of new cholinesterase inhibitors. PeerJ, 2016, 4, e2140.	2.0	18
116	State-of-the-Art and Prospects of Biomolecules: Incorporation in Functional Metal–Organic Frameworks. Topics in Current Chemistry, 2019, 377, 34.	5.8	18
117	Research Progress of Catalysis for Low-Carbon Olefins Synthesis Through Hydrogenation of CO ₂ . Journal of Nanoscience and Nanotechnology, 2019, 19, 3162-3172.	0.9	18
118	Discovery of Selective Butyrylcholinesterase (BChE) Inhibitors through a Combination of Computational Studies and Biological Evaluations. Molecules, 2019, 24, 4217.	3.8	18
119	Investigating the Selectivity of Metalloenzyme Inhibitors in the Presence of Competing Metalloproteins. ChemMedChem, 2015, 10, 1733-1738.	3.2	17
120	Discovery of new scaffolds from approved drugs as acetylcholinesterase inhibitors. RSC Advances, 2015, 5, 90288-90294.	3.6	17
121	One-pot fabrication of porous nitrogen-deficient g-C3N4 with superior photocatalytic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400, 112729.	3.9	17
122	Dual-Selective Catalysis in Dephosphorylation Tuned by Hf ₆ -Containing Metal–Organic Frameworks Mimicking Phosphatase. ACS Central Science, 2021, 7, 831-840.	11.3	17
123	Robust Microporous Metal–Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2019, 131, 10315-10320.	2.0	16
124	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie - International Edition, 2021, 60, 2974-2979.	13.8	16
125	Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer's disease. European Journal of Medicinal Chemistry, 2020, 207, 112751.	5.5	15
126	Biomimetic synthesis of 2D/2D mixed graphitic carbon nitride /carbonized polydopamine nanosheets with excellent photocatalytic performance. Materials Chemistry and Physics, 2020, 256, 123621.	4.0	15

#	Article	IF	CITATIONS
127	Removal of Endocrine-Disrupting Chemicals from Environment Using A Robust Platform Based on Metal–Organic Framework Nanoparticles. ACS Applied Nano Materials, 2020, 3, 3646-3651.	5.0	14
128	Discovery of potent glycogen synthase kinase 3/cholinesterase inhibitors with neuroprotection as potential therapeutic agent for Alzheimer's disease. Bioorganic and Medicinal Chemistry, 2021, 30, 115940.	3.0	14
129	Improving the thermostability of trehalose synthase from Thermomonospora curvata by covalent cyclization using peptide tags and investigation of the underlying molecular mechanism. International Journal of Biological Macromolecules, 2021, 168, 13-21.	7.5	14
130	Protective Coating with Crystalline Shells to Fabricate Dual-Stimuli Responsive Actuators. CCS Chemistry, 2022, 4, 205-213.	7.8	14
131	Fabrication of Biomolecule–Covalent-Organic-Framework Composites as Responsive Platforms for Smart Regulation of Fermentation Application. ACS Applied Materials & Interfaces, 2021, 13, 32058-32066.	8.0	13
132	Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. PeerJ, 2018, 6, e4206.	2.0	13
133	The modulation of opto-electronic properties of CH3NH3PbBr3 crystal. Journal of Materials Science: Materials in Electronics, 2017, 28, 11053-11058.	2.2	12
134	Discovery, molecular dynamic simulation and biological evaluation of structurally diverse cholinesterase inhibitors with new scaffold through shape-based pharmacophore virtual screening. Bioorganic Chemistry, 2019, 92, 103294.	4.1	12
135	Metal–Organic Framework Disintegrants: Enzyme Preparation Platforms with Boosted Activity. Angewandte Chemie, 2020, 132, 16907-16912.	2.0	12
136	Multifunctional Platforms: Metal-Organic Frameworks for Cutaneous and Cosmetic Treatment. CheM, 2021, 7, 450-462.	11.7	12
137	Biomolecule@COF: Natural-artificial hybrid microcapsules for controllable biocatalysis. Particuology, 2022, 64, 140-144.	3.6	12
138	Engineering Olefinâ€Linked Covalent Organic Frameworks for Photoenzymatic Reduction of CO ₂ . Angewandte Chemie, 2022, 134, .	2.0	12
139	A bis(maleonitriledithiolato)nickelate charge-transfer salt with mixed stacks exhibiting novel non-ferroelectric-type dielectric phase transition and bistability. RSC Advances, 2014, 4, 9178.	3.6	11
140	Bioinspired Construction of g-C ₃ N ₄ Nanolayers on a Carbonized Polydopamine Nanosphere Surface with Excellent Photocatalytic Performance. Industrial & Engineering Chemistry Research, 2020, 59, 12389-12398.	3.7	11
141	Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2021, 15, 666-678.	4.4	11
142	Insight into the Influence of the Graphite Layer and Cobalt Crystalline on a ZIF-67-Derived Catalyst for Fischer–Tropsch Synthesis. ACS Applied Materials & Interfaces, 2021, 13, 9885-9896.	8.0	11
143	A Class of Rigid–Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angewandte Chemie - International Edition, 2022, 61,	13.8	11
144	Post-synthetic transformation of a Zn(<scp>ii</scp>) polyhedral coordination network into a new supramolecular isomer of HKUST-1. Chemical Communications, 2017, 53, 8866-8869.	4.1	10

#	Article	IF	CITATIONS
145	Proteinâ€Structureâ€Directed Metal–Organic Zeoliteâ€like Networks as Biomacromolecule Carriers. Angewandte Chemie, 2020, 132, 6322-6326.	2.0	10
146	Theoretical Exploration and Electronic Applications of Conductive Two-Dimensional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 25.	5.8	10
147	Depsidones and diaryl ethers from potato endophytic fungus Boeremia exigua. Fìtoterapìâ, 2020, 141, 104483.	2.2	10
148	CO ₂ hydrogenation to C ₅₊ hydrocarbons over Kâ€promoted Fe/CNT catalyst: Effect of potassium on structure–activity relationship. Applied Organometallic Chemistry, 2021, 35, e6253.	3.5	10
149	On-Surface Bottom-Up Construction of COF Nanoshells towards Photocatalytic H ₂ Production. Research, 2021, 2021, 9798564.	5.7	10
150	Functional Peptides Encoded by Long Non-Coding RNAs in Gastrointestinal Cancer. Frontiers in Oncology, 2021, 11, 777374.	2.8	10
151	Engineering COFs as smart triggers for rapid capture and controlled release of singlet oxygen. Journal of Materials Chemistry A, 2021, 9, 27434-27441.	10.3	10
152	Modular assembly of electron transfer pathways in bimetallic MOFs for photocatalytic ammonia synthesis. Catalysis Science and Technology, 2022, 12, 2015-2022.	4.1	10
153	Inorganic Kernel-Reconstituted Lipoprotein Biomimetic Nanovehicles Enable Efficient Targeting "Trojan Horse―Delivery of STAT3-Decoy Oligonucleotide for Overcoming TRAIL Resistance. Theranostics, 2017, 7, 4480-4497.	10.0	9
154	Rational Fabrication of Crystalline Smart Materials for Rapid Detection and Efficient Removal of Ozone. Angewandte Chemie, 2021, 133, 6120-6125.	2.0	9
155	Pyrimidine-modified g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. Materials Research Bulletin, 2021, 144, 111498.	5.2	9
156	Template-Directed Fabrication of Highly Efficient Metal–Organic Framework Photocatalysts. ACS Applied Materials & Interfaces, 2021, 13, 58619-58629.	8.0	9
157	AchievingÂeffective and selective CK1 inhibitors through structure modification. Future Medicinal Chemistry, 2021, 13, 505-528.	2.3	8
158	The effect of metalloprotein inhibitors on cellular metal ion content and distribution. Metallomics, 2017, 9, 250-257.	2.4	7
159	Improving Eflornithine Oral Bioavailability and Brain Uptake by Modulating Intercellular Junctions With an E-cadherin Peptide. Journal of Pharmaceutical Sciences, 2019, 108, 3870-3878.	3.3	7
160	Novel BuChE-IDO1 inhibitors from sertaconazole: Virtual screening, chemical optimization and molecular modeling studies. Bioorganic and Medicinal Chemistry Letters, 2021, 34, 127756.	2.2	7
161	Fabrication of Large Single Crystals for Platinumâ€Based Linear Polymers with Controlledâ€Release and Photoactuator Performance. Angewandte Chemie, 2019, 131, 18807-18813.	2.0	6
162	Highly dispersed Co nanoparticles embedded in a carbon matrix as a robust and efficient Fischer–Tropsch synthesis catalyst under harsh conditions. Catalysis Science and Technology, 2021, 11, 1059-1066.	4.1	6

#	Article	IF	CITATIONS
163	Hepatitis B virus X protein mediated epigenetic alterations in the pathogenesis of hepatocellular carcinoma. Hepatology International, 2022, 16, 741-754.	4.2	6
164	Development of an In Vitro Model to Screen CYP1B1-Targeted Anticancer Prodrugs. Journal of Biomolecular Screening, 2016, 21, 1090-1099.	2.6	5
165	Synthesis and bio-evaluation of a novel selective butyrylcholinesterase inhibitor discovered through structure-based virtual screening. International Journal of Biological Macromolecules, 2021, 166, 1352-1364.	7.5	5
166	The Role of Vitamin D in Gastrointestinal Diseases: Inflammation, Gastric Cancer, and Colorectal Cancer. Current Medicinal Chemistry, 2022, 29, 3836-3856.	2.4	5
167	A Practical and <scp>Highâ€Affinity</scp> Fluorescent Probe for Butyrylcholinesterase: A Good Strategy for Binding Affinity Characterization. Chinese Journal of Chemistry, 2022, 40, 1285-1292.	4.9	5
168	Covalent organic frameworks as crystalline sponges for enzyme extraction and production from natural biosystems. Chemical Engineering Journal, 2022, 444, 136624.	12.7	5
169	Design and evaluation of Nrf2 activators with 1,3,4-oxa/thiadiazole core as neuro-protective agents against oxidative stress in PC-12 cells. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126853.	2.2	4
170	Core–Shell Co@C Catalyst: Effect of a Confined Carbon Microenvironment on Syngas Conversion. Industrial & Engineering Chemistry Research, 2020, 59, 14636-14642.	3.7	4
171	The modification of titanium in mesoporous silica for Co-based Fischer-Tropsch catalysts. Frontiers of Chemical Science and Engineering, 2022, 16, 1224-1236.	4.4	4
172	Synthesis and Biological Evaluation of Novel Selenonucleosides. Nucleosides, Nucleotides and Nucleic Acids, 2008, 27, 1001-1008.	1.1	3
173	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie, 2021, 133, 14342-14355.	2.0	3
174	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie, 2021, 133, 3011-3016.	2.0	3
175	Comparison of different sequencing strategies for assembling chromosome-level genomes of extremophiles with variable GC content. IScience, 2021, 24, 102219.	4.1	3
176	10.2478/s11814-009-0323-3., 2011, 27, 183.		3
177	Evidence on Primary Pore Size Dependence of C–C Bond Coupling Inside Zr-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 24713-24722.	3.1	3
178	A Class of Rigid–Flexible Coupling Crystalline Crosslinked Polymers as Vapomechanical Actuators. Angewandte Chemie, 2022, 134, .	2.0	3
179	Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene, 2022, 816, 146171.	2.2	3
180	Bioinspired construction of g-C3N4 isotype heterojunction on carbonized poly(tannic acid) nanorod surface with multistep electron transfer path. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 431, 114045.	3.9	3

#	Article	IF	CITATIONS
181	Metal–Organic Frameworks: Antibodies@MOFs: An In Vitro Protective Coating for Preparation and Storage of Biopharmaceuticals (Adv. Mater. 2/2019). Advanced Materials, 2019, 31, 1970012.	21.0	2
182	Discovery of a Selective 6-Hydroxy-1, 4-Diazepan-2-one Containing Butyrylcholinesterase Inhibitor by Virtual Screening and MM-GBSA Rescoring. Dose-Response, 2020, 18, 155932582093852.	1.6	2
183	Stepwise Fabrication of Proton-conducting Covalent Organic Frameworks for Hydrogen Fuel Cell Applications. Chemical Research in Chinese Universities, 2022, 38, 461-467.	2.6	2
184	Discovery of tryptophanâ€ŧetrahydroisoquinoline derivatives as multifunctional agents for treatment of Alzheimer's disease. Chinese Journal of Chemistry, 0, , .	4.9	2
185	Inhibition of growth ofl-cystine crystals by N-acetyl-l-cysteine. CrystEngComm, 2016, 18, 8587-8590.	2.6	1
186	Synthesis and activity of miconazole derivatives as dual BChE/IDO1 inhibitors for the treatment of Alzheimer's disease. Future Medicinal Chemistry, 2021, 13, 1105-1125.	2.3	1
187	The recent developments and applications of chiral covalent organic frameworks. Scientia Sinica Chimica, 2019, 49, 662-671.	0.4	1
188	The Design and Optimization of Monomeric Multitarget Peptides for the Treatment of Multifactorial Diseases. Journal of Medicinal Chemistry, 2022, 65, 3685-3705.	6.4	1
189	Gardenia jasminoides Ellis Fruit Extracts Attenuated Colitis in 2,4,6-Trinitrobenzenesulfonic Acid-Induced Rats. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	1.2	1
190	Frontispiece: Photomechanical Organic Crystals as Smart Materials for Advanced Applications. Chemistry - A European Journal, 2019, 25, .	3.3	0
191	Frontispiece: Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
192	Frontispiz: Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie, 2021, 133, .	2.0	0
193	Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-30.	4.0	0