Liang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4054509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Visibleâ€Lightâ€Induced Regioselective Deaminative Alkylation of Coumarins via Photoredox Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 24-29.	4.3	10
2	Bioengineered microglia-targeted exosomes facilitate Aβ clearance via enhancing activity of microglial lysosome for promoting cognitive recovery in Alzheimer's disease. , 2022, 136, 212770.		9
3	A biomimetic zeolite-based nanoenzyme contributes to neuroprotection in the neurovascular unit after ischaemic stroke via efficient removal of zinc and ROS. Acta Biomaterialia, 2022, 144, 142-156.	8.3	11
4	A multifunctional antibacterial and self-healing hydrogel laden with bone marrow mesenchymal stem cell-derived exosomes for accelerating diabetic wound healing. Materials Science and Engineering C, 2022, 133, 112613.	7.3	45
5	Brain-targeted heptapeptide-loaded exosomes attenuated ischemia–reperfusion injury by promoting the transfer of healthy mitochondria from astrocytes to neurons. Journal of Nanobiotechnology, 2022, 20, .	9.1	18
6	Iron-catalyzed C–F bond silylation and borylation of fluoroarenes. Organic Chemistry Frontiers, 2021, 8, 5322-5327.	4.5	9
7	Plasma Exosomes as a Therapeutic Approach Prevent the Cognitive Decline by Inhibiting Tau Protein Hyperphosphorylation in Alzheimer's Disease Mice. Journal of Biomaterials and Tissue Engineering, 2021, 11, 221-228.	0.1	0
8	A novel brain targeted plasma exosomes enhance the neuroprotective efficacy of edaravone in ischemic stroke. IET Nanobiotechnology, 2021, 15, 107-116.	3.8	9
9	Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons. Journal of Nanobiotechnology, 2021, 19, 141.	9.1	57
10	Ginkgolide B Alleviates Learning and Memory Impairment in Rats With Vascular Dementia by Reducing Neuroinflammation via Regulating NF-κB Pathway. Frontiers in Pharmacology, 2021, 12, 676392.	3.5	12
11	Baicalin-loaded macrophage-derived exosomes ameliorate ischemic brain injury via the antioxidative pathway. Materials Science and Engineering C, 2021, 126, 112123.	7.3	29
12	Growth arrest and DNA damage-inducible protein 34 (GADD34) contributes to cerebral ischemic injury and can be detected in plasma exosomes. Neuroscience Letters, 2021, 758, 136004.	2.1	10
13	Biomimetic silibinin-loaded macrophage-derived exosomes induce dual inhibition of AÎ ² aggregation and astrocyte activation to alleviate cognitive impairment in a model of Alzheimer's disease. Materials Science and Engineering C, 2021, 129, 112365.	7.3	24
14	Plasma Exosomes Loaded pH-Responsive Carboxymethylcellulose Hydrogel Promotes Wound Repair by Activating the Vascular Endothelial Growth Factor Signaling Pathway in Type 1 Diabetic Mice. Journal of Biomedical Nanotechnology, 2021, 17, 2021-2033.	1.1	9
15	A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound healing via detrimental factor neutralization and ROS scavenging. Journal of Nanobiotechnology, 2021, 19, 414.	9.1	27
16	Fabrication of carboxymethylcellulose hydrogel containing β-cyclodextrin–eugenol inclusion complexes for promoting diabetic wound healing. Journal of Biomaterials Applications, 2020, 34, 851-863.	2.4	14
17	A general and green fluoroalkylation reaction promoted <i>via</i> noncovalent interactions between acetone and fluoroalkyl iodides. Chemical Communications, 2020, 56, 1815-1818.	4.1	68
18	Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis. Materials Science and Engineering C, 2020, 117, 111314.	7.3	80

LIANG ZHAO

#	Article	IF	CITATIONS
19	Edaravone-Loaded Macrophage-Derived Exosomes Enhance Neuroprotection in the Rat Permanent Middle Cerebral Artery Occlusion Model of Stroke. Molecular Pharmaceutics, 2020, 17, 3192-3201.	4.6	36
20	Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Delivery, 2020, 27, 745-755.	5.7	116
21	Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sciences, 2020, 256, 117987.	4.3	29
22	Iron-Catalyzed Silylation of (Hetero)aryl Chlorides with Et ₃ SiBpin. Organic Letters, 2020, 22, 2816-2821.	4.6	22
23	Brain Microvascular Endothelial Cell Derived Exosomes Potently Ameliorate Cognitive Dysfunction by Enhancing the Clearance of AÎ ² Through Up-Regulation of P-gp in Mouse Model of AD. Neurochemical Research, 2020, 45, 2161-2172.	3.3	21
24	Chitosan nanoparticles loaded with aspirin and 5â€fluororacil enable synergistic antitumour activity through the modulation of NFâ€₽B/COXâ€2 signalling pathway. IET Nanobiotechnology, 2020, 14, 479-484.	3.8	10
25	Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model. Journal of Biomaterials Applications, 2019, 34, 476-486.	2.4	46
26	The Photoinduced Metalâ€Free Hydrotrifluoromethylation of Vinyl Phosphonates or Phosphine Oxides. European Journal of Organic Chemistry, 2019, 2019, 7475-7482.	2.4	10
27	Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 3793-3803.	2.8	108
28	Palladium-catalyzed cross-coupling of benzylzinc reagents with 2-bromo-3,3,3-trifluoropropene. Synthetic Communications, 2019, 49, 3329-3334.	2.1	2
29	Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale, 2019, 11, 7481-7496.	5.6	202
30	Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomaterials Science, 2019, 7, 2037-2049.	5.4	142
31	Chitosan nanoparticles induced the antitumor effect in hepatocellular carcinoma cells by regulating ROS-mediated mitochondrial damage and endoplasmic reticulum stress. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 747-756.	2.8	32
32	pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Delivery and Translational Research, 2019, 9, 227-239.	5.8	64
33	Development and application of vortex-assisted membrane extraction based on metal–organic framework mixed-matrix membrane for the analysis of estrogens in human urine. Analytica Chimica Acta, 2018, 1023, 35-43.	5.4	50
34	Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 293-301.	2.8	41
35	lodine-Catalyzed C–H Amidation and Imination at the 2α-Position of 2,3-Disubstituted Indoles with Chloramine Salts. Journal of Organic Chemistry, 2018, 83, 4665-4673.	3.2	7
36	Chitosan nanoparticles loaded hydrogels promote skin wound healing through the modulation of reactive oxygen species. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 138-149.	2.8	38

LIANG ZHAO

#	Article	IF	CITATIONS
37	Curcumin-loaded chitosan–bovine serum albumin nanoparticles potentially enhanced Aβ 42 phagocytosis and modulated macrophage polarization in Alzheimer's disease. Nanoscale Research Letters, 2018, 13, 330.	5.7	55
38	Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma. Journal of Nanobiotechnology, 2018, 16, 103.	9.1	97
39	Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44. Journal of Nanobiotechnology, 2017, 15, 7.	9.1	124
40	Triphenyl Phosphine-Functionalized Chitosan Nanoparticles Enhanced Antitumor Efficiency Through Targeted Delivery of Doxorubicin to Mitochondria. Nanoscale Research Letters, 2017, 12, 158.	5.7	43
41	Chitosan nanoparticle-mediated co-delivery of shAtg-5 and gefitinib synergistically promoted the efficacy of chemotherapeutics through the modulation of autophagy. Journal of Nanobiotechnology, 2017, 15, 28.	9.1	29
42	Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis. Nanoscale Research Letters, 2017, 12, 403.	5.7	27
43	mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy. Journal of Nanobiotechnology, 2017, 15, 66.	9.1	14
44	In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes. International Journal of Nanomedicine, 2017, Volume 12, 5487-5500.	6.7	20
45	Sodium Alginate Coated Chitosan Nanoparticles Enhance Antitumor Efficiency via Smartly Regulating Drug Release at Different pH. Journal of Biomaterials and Tissue Engineering, 2017, 7, 127-133.	0.1	3
46	Preparation and characterization of novel chitosan-protamine nanoparticles for nucleus-targeted anticancer drug delivery. International Journal of Nanomedicine, 2016, Volume 11, 6035-6046.	6.7	20
47	Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5328-36.	7.1	180
48	Preparation of Gefitinib Loaded Chitosan-Bovine Serum Albumin Nanoparticles for Enhancing Antitumor Effects. Journal of Biomaterials and Tissue Engineering, 2016, 6, 582-587.	0.1	2
49	Efficient Nucleus-Targeted Delivery of Gene by Nuclear Localization Signal Peptides-Mediated Nanoparticles. Journal of Biomaterials and Tissue Engineering, 2016, 6, 924-930.	0.1	2
50	Nanoparticles inhibit cancer cell invasion and enhance antitumor efficiency by targeted drug delivery via cell surface-related GRP78. International Journal of Nanomedicine, 2015, 10, 245.	6.7	27
51	Co-delivery of Gefitinib and chloroquine by chitosan nanoparticles for overcoming the drug acquired resistance. Journal of Nanobiotechnology, 2015, 13, 57.	9.1	57
52	Intracellular targeted co-delivery of shMDR1 and gefitinib with chitosan nanoparticles for overcoming multidrug resistance. International Journal of Nanomedicine, 2015, 10, 7045.	6.7	12
53	The role of c-Src in the invasion and metastasis of hepatocellular carcinoma cells induced by association of cell surface GRP78 with activated α2M. BMC Cancer, 2015, 15, 389.	2.6	29
54	Effects of arsenic trioxide on proliferation, paracrine and migration of cardiac progenitor cells. International Journal of Cardiology, 2015, 179, 393-396.	1.7	5

LIANG ZHAO

#	Article	IF	CITATIONS
55	Protamine nanoparticles for improving shRNA-mediated anti-cancer effects. Nanoscale Research Letters, 2015, 10, 134.	5.7	10
56	GRP78 confers the resistance to 5-FU by activating the c-Src/LSF/TS Axis in hepatocellular carcinoma. Oncotarget, 2015, 6, 33658-33674.	1.8	21
57	Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation. International Journal of Nanomedicine, 2014, 9, 2149.	6.7	14
58	Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. Journal of Nanobiotechnology, 2014, 12, 43.	9.1	64
59	Carboxymethyl-β-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid. International Journal of Pharmaceutics, 2014, 474, 202-211.	5.2	53
60	Folic Acid-Chitosan Conjugated Nanoparticles for Improving Tumor-Targeted Drug Delivery. BioMed Research International, 2013, 2013, 1-6.	1.9	73
61	The Cell Surface GRP78 Facilitates the Invasion of Hepatocellular Carcinoma Cells. BioMed Research International, 2013, 2013, 1-8.	1.9	34
62	Preparation of Biocompatible Carboxymethyl Chitosan Nanoparticles for Delivery of Antibiotic Drug. BioMed Research International, 2013, 2013, 1-7.	1.9	30
63	Clinical pharmacology considerations in biologics development. Acta Pharmacologica Sinica, 2012, 33, 1339-1347.	6.1	81
64	Carbon nanotubes grown on electrospun polyacrylonitrile-based carbon nanofibers via chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2012, 106, 863-869.	2.3	3
65	Preparation and characterization of imprinted monolith with metal ion as pivot. Journal of Chromatography A, 2011, 1218, 9071-9079.	3.7	31
66	A new stochastic approach to multi-compartment pharmacokinetic models: probability of traveling route and distribution of residence time in linear and nonlinear systems. Journal of Pharmacokinetics and Pharmacodynamics, 2011, 38, 83-104.	1.8	9
67	Characterization of Convection for Molecularly Imprinted Monolith. Chromatographia, 2010, 71, 559-569.	1.3	10
68	Comparison of methods for evaluating drug-drug interaction. Frontiers in Bioscience - Elite, 2010, E2, 241-249.	1.8	120
69	Modification of electrospun poly(vinylidene fluorideâ€ <i>co</i> â€hexafluoropropylene) membranes through the introduction of poly(ethylene glycol) dimethacrylate. Journal of Applied Polymer Science, 2009, 111, 3104-3112.	2.6	13
70	New developments in using stochastic recipe for multi-compartment model: Inter-compartment traveling route, residence time, and exponential convolution expansion. Mathematical Biosciences and Engineering, 2009, 6, 663-682.	1.9	6
71	Atom transfer radical additions (ATRAs) promoted by catalytic amounts of amines: The effective iododifluoroalkylation of alkenes/alkynes. Synthetic Communications, 0, , 1-9.	2.1	0