
Pingan Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	47.7	44
2	Dynamics of Passive Droplet Generation in Capillary Microfluidic Devices. , 2022, , 25-39.		0
3	Summary and Perspective. , 2022, , 301-305.		0
4	Microcavity Surfaces for Robust Hot-Water Super-Repellency. , 2022, , 241-262.		0
5	Active Droplet Generation with Microfluidics by Mechanical Vibration. , 2022, , 41-67.		1
6	Well-Ordered Microstructures from Droplet Self-Assembly. , 2022, , 195-216.		0
7	Microfluidics-Synthesized Colloidosomes. , 2022, , 89-104.		1
8	Oil-Assisted Generation of Water-in-Water Droplets with Microfluidics. , 2022, , 69-87.		0
9	A paradigm shift in liquid cooling by multitextured surface design. Innovation(China), 2022, 3, 100222.	9.1	3
10	Magnetic Field-Assisted Fission of a Ferrofluid Droplet for Large-Scale Droplet Generation. Langmuir, 2022, 38, 5838-5846.	3.5	8
11	Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. Biophysics Reviews, 2022, 3, .	2.7	2
12	Nonspecular Reflection of Droplets. Small, 2021, 17, 2006695.	10.0	14
13	Droplet Manipulations: Nonspecular Reflection of Droplets (Small 3/2021). Small, 2021, 17, 2170009.	10.0	1
14	Bioinspired Soft Microactuators. Advanced Materials, 2021, 33, e2008558.	21.0	22
15	Asymmetric fibers for efficient fog harvesting. Chemical Engineering Journal, 2021, 415, 128944.	12.7	42
16	Robust liquid repellency by stepwise wetting resistance. Applied Physics Reviews, 2021, 8, .	11.3	34
17	Three-dimensional capillary ratchet-induced liquid directional steering. Science, 2021, 373, 1344-1348.	12.6	223
18	Citrus-peel-like durable slippery surfaces. Chemical Engineering Journal, 2021, 420, 129599.	12.7	21

Pingan Zhu

#	Article	IF	CITATIONS
19	Superhydrophobicity preventing surface contamination asÂa novel strategy against COVID-19. Journal of Colloid and Interface Science, 2021, 600, 613-619.	9.4	21
20	Microfluidic generation of ATPS droplets by transient double emulsion technique. Lab on A Chip, 2021, 21, 2684-2690.	6.0	17
21	Hourglass-Shaped Microfibers. ACS Applied Materials & amp; Interfaces, 2020, 12, 29747-29756.	8.0	5
22	Microfluidic Encapsulation of Phase-Change Materials for High Thermal Performance. Langmuir, 2020, 36, 8165-8173.	3.5	29
23	Omniphobic ZIFâ€8@Hydrogel Membrane by Microfluidicâ€Emulsionâ€Templating Method for Wound Healing. Advanced Functional Materials, 2020, 30, 1909389.	14.9	133
24	Topographyâ€Directed Hotâ€Water Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1900798.	11.2	32
25	Microfluidic Rapid Fabrication of Tunable Polyvinyl Alcohol Microspheres for Adsorption Applications. Materials, 2019, 12, 3712.	2.9	4
26	Engineering Micromotors with Droplet Microfluidics. ACS Nano, 2019, 13, 6319-6329.	14.6	68
27	Droplet pinch-off with pressure fluctuations. Chemical Engineering Science, 2019, 196, 333-343.	3.8	9
28	Engineering embolic microparticles from a periodically-pulsating charged liquid meniscus. Chemical Engineering Science, 2018, 183, 13-19.	3.8	4
29	Engineering Microstructure with Evaporationâ€Induced Selfâ€Assembly of Microdroplets. Small Methods, 2018, 2, 1800017.	8.6	43
30	Superwettability with antithetic states: fluid repellency in immiscible liquids. Materials Horizons, 2018, 5, 1156-1165.	12.2	25
31	Passive Mixing inside Microdroplets. Micromachines, 2018, 9, 160.	2.9	42
32	Self-Assembly of TiO ₂ Nanofiber-Based Microcapsules by Spontaneously Evolved Multiple Emulsions. Langmuir, 2018, 34, 8785-8791.	3.5	10
33	Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating. Nature Communications, 2017, 8, 15823.	12.8	143
34	Mechano-regulated surface for manipulating liquid droplets. Nature Communications, 2017, 8, 14831.	12.8	88
35	Large-scale water collection of bioinspired cavity-microfibers. Nature Communications, 2017, 8, 1080.	12.8	144
36	Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers. Lab on A Chip, 2017, 17, 3310-3317.	6.0	47

Pingan Zhu

#	Article	IF	CITATIONS
37	A method for predicting thermal waves in dual-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 2017, 115, 250-257.	4.8	15
38	Spreading-induced dewetting for monolayer colloidosomes with responsive permeability. Journal of Materials Chemistry B, 2017, 5, 6034-6041.	5.8	15
39	Passive and active droplet generation with microfluidics: a review. Lab on A Chip, 2017, 17, 34-75.	6.0	825
40	A Dewetting Model for Double-Emulsion Droplets. Micromachines, 2016, 7, 196.	2.9	12
41	Engineering particle morphology with microfluidic droplets. Journal of Micromechanics and Microengineering, 2016, 26, 075011.	2.6	18
42	Droplet Breakup in Expansion-contraction Microchannels. Scientific Reports, 2016, 6, 21527.	3.3	28
43	Beyond the classical theory of heat conduction: a perspective view of future from entropy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160362.	2.1	5
44	Pinch-off of microfluidic droplets with oscillatory velocity of inner phase flow. Scientific Reports, 2016, 6, 31436.	3.3	29
45	Droplet generation in co-flow microfluidic channels with vibration. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	62
46	Tip-multi-breaking in Capillary Microfluidic Devices. Scientific Reports, 2015, 5, 11102.	3.3	45