Silverio GarcÃ-a-Lara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4054176/publications.pdf

Version: 2024-02-01

85 papers 2,208 citations

257101 24 h-index 42 g-index

87 all docs

87 docs citations

87 times ranked

2290 citing authors

#	Article	IF	Citations
1	In vitro plant tissue culture: means for production of biological active compounds. Planta, 2018, 248, 1-18.	1.6	333
2	The Role of Pericarp Cell Wall Components in Maize Weevil Resistance. Crop Science, 2004, 44, 1546-1552.	0.8	110
3	Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. Journal of Cereal Science, 2010, 52, 410-416.	1.8	86
4	Preventive and therapeutic potential of peptides from cereals against cancer. Journal of Proteomics, 2014, 111, 165-183.	1.2	86
5	Hydroxycinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food Hydrocolloids, 2014, 35, 471-475.	5.6	80
6	Effect of inÂvitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiology and Biochemistry, 2017, 115, 400-407.	2.8	69
7	Anti-Cancer Activity of Maize Bioactive Peptides. Frontiers in Chemistry, 2017, 5, 44.	1.8	68
8	Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crops Research, 2013, 141, 69-76.	2.3	56
9	Genetic approaches to reducing losses of stored grain to insects and diseases. Current Opinion in Plant Biology, 2004, 7, 480-485.	3.5	52
10	Antiproliferative effect of peptide fractions isolated from a quality protein maize, a white hybrid maize, and their derived peptides on hepatocarcinoma human HepG2 cells. Journal of Functional Foods, 2017, 34, 36-48.	1.6	44
11	Luteolin content and antioxidant activity in micropropagated plants of Poliomintha glabrescens (Gray). Plant Cell, Tissue and Organ Culture, 2012, 108, 521-527.	1.2	43
12	Phytochemical and Nutraceutical Changes during Recurrent Selection for Storage Pest Resistance in Tropical Maize. Crop Science, 2014, 54, 2423-2432.	0.8	42
13	Soluble Peroxidase Activity in Maize Endosperm Associated with Maize Weevil Resistance. Crop Science, 2007, 47, 1125-1130.	0.8	39
14	QTL Mapping of Tropical Maize Grain Components Associated with Maize Weevil Resistance. Crop Science, 2010, 50, 815-825.	0.8	39
15	Mapping of QTL Associated with Maize Weevil Resistance in Tropical Maize. Crop Science, 2009, 49, 139-149.	0.8	38
16	Postharvest insect resistance in maize. Journal of Stored Products Research, 2018, 77, 66-76.	1.2	38
17	Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications. Planta Medica, 2019, 85, 535-551.	0.7	38
18	Fumonisins and their analogues in contaminated corn and its processed foods – a review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 2183-2203.	1.1	35

#	Article	IF	Citations
19	Portable hermetic storage bag resistant to Prostephanus truncatus, Rhyzopertha dominica, and Callosobruchus maculatus. Journal of Stored Products Research, 2013, 54, 23-25.	1.2	34
20	Genetic mapping of QTL for maize weevil resistance in a RIL population of tropical maize. Theoretical and Applied Genetics, 2015, 128, 411-419.	1.8	32
21	Effect of thermal processing and reducing agents on trypsin inhibitor activity and functional properties of soybean and chickpea protein concentrates. LWT - Food Science and Technology, 2018, 98, 629-634.	2.5	32
22	Corn History and Culture., 2019,, 1-18.		32
23	Chemopreventive Effects of Free and Bound Phenolics Associated to Steep Waters (Nejayote) Obtained After Nixtamalization of Different Maize Types. Plant Foods for Human Nutrition, 2012, 67, 94-99.	1.4	29
24	An improved microscale method for extraction of phenolic acids from maize. Plant Methods, 2017, 13, 81.	1.9	29
25	Response of recurrent selection on yield, kernel oil content and fatty acid composition of subtropical maize populations. Field Crops Research, 2013, 142, 27-35.	2.3	27
26	Characterization of concentrated agave saps and storage effects on browning, antioxidant capacity and amino acid content. Journal of Food Composition and Analysis, 2016, 45, 113-120.	1.9	26
27	"Antioxidant activity and characterization of protein fractions and hydrolysates from normal and quality protein maize kernels― Journal of Cereal Science, 2017, 76, 85-91.	1.8	26
28	Grain and Tortilla Quality in Landraces and Improved Maize Grown in the Highlands of Mexico. Plant Foods for Human Nutrition, 2011, 66, 203-208.	1.4	25
29	Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. Frontiers in Plant Science, 2016, 7, 763.	1.7	24
30	Enhancement of saponins and flavonols by micropropagation of Agave salmiana. Industrial Crops and Products, 2017, 105, 225-230.	2.5	24
31	Relationship between hydroxycinnamic profile with gelation capacity and rheological properties of arabinoxylans extracted from different maize fiber sources. Food Hydrocolloids, 2014, 39, 280-285.	5 . 6	23
32	Effects of parboiling and other hydrothermal treatments on the physical, functional, and nutritional properties of rice and other cereals. Cereal Chemistry, 2018, 95, 79-91.	1.1	23
33	Antioxidant Activity of Zein Hydrolysates from Zea Species and Their Cytotoxic Effects in a Hepatic Cell Culture. Molecules, 2018, 23, 312.	1.7	23
34	Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metabolic Engineering Communications, 2022, 14, e00194.	1.9	22
35	Hydrothermal treatment of maize: Changes in physical, chemical, and functional properties. Food Chemistry, 2018, 263, 225-231.	4.2	21
36	Maize bioactive peptides: From structure to human health. Journal of Cereal Science, 2021, 100, 103232.	1.8	20

#	Article	IF	CITATIONS
37	Synergistic effects of insect-resistant maize and Teretrius nigrescens on the reduction of grain losses caused by Prostephanus truncatus (Horn.). Journal of Stored Products Research, 2011, 47, 95-100.	1.2	19
38	Insect Pests. , 2016, , 432-436.		19
39	Natural Peptides Inducing Cancer Cell Death: Mechanisms and Properties of Specific Candidates for Cancer Therapeutics. Molecules, 2021, 26, 7453.	1.7	19
40	Micropropagation Effect on the Anti-carcinogenic Activitiy of Polyphenolics from Mexican Oregano (Poliomintha glabrescens Gray) in Human Colon Cancer Cells HT-29. Plant Foods for Human Nutrition, 2013, 68, 155-162.	1.4	18
41	Strategies to Produce Thermoplastic Starch–Zein Blends: Effect on Compatibilization. Journal of Polymers and the Environment, 2014, 22, 508-524.	2.4	18
42	Fatty acid composition and proximate analysis of improved highâ€oil corn double haploid hybrids adapted to subtropical areas. Cereal Chemistry, 2019, 96, 182-192.	1.1	16
43	Micropropagation of Agave salmiana: Means to Production of Antioxidant and Bioactive Principles. Frontiers in Plant Science, 2015, 6, 1026.	1.7	15
44	Natural variation of hydroxycinnamic acid amides in maize landraces. Journal of Cereal Science, 2019, 88, 145-149.	1.8	15
45	Development and Structure of the Corn Kernel. , 2019, , 147-163.		15
46	Field effectiveness of improved hermetic storage technologies on maize grain quality in Central Mexico. Journal of Stored Products Research, 2020, 87, 101585.	1.2	15
47	Thermoplastic Processing of Blue Maize and White Sorghum Flours to Produce Bioplastics. Journal of Polymers and the Environment, 2015, 23, 72-82.	2.4	14
48	Effects of Limeâ€Cooking on Carotenoids Present in Masa and Tortillas Produced from Different Types of Maize. Cereal Chemistry, 2014, 91, 508-512.	1.1	13
49	In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa α-Zein Sequences of Maize. Molecules, 2020, 25, 5405.	1.7	13
50	Activity-directed identification of maize kernel peroxidases associated with postharvest insect resistance. Molecular BioSystems, 2010, 6, 1810.	2.9	12
51	POTENCIAL NUTRACEÃ ŠTICO DE LOS MAÃCES CRIOLLOS Y CAMBIOS DURANTE EL PROCESAMIENTO TRADICIONAL Y CON EXTRUSIÃ "N. Revista Fitotecnia Mexicana, 2013, 36, 295.	0.0	12
52	Recent advances on the use of abiotic stress (water, UV radiation, atmospheric gases, and temperature) Tj ETQqC Growth Regulation, 2022, 97, 1-20.	0 0 0 rgBT / 1.8	/Overlock 10 12
53	Conversion into bioethanol of insect (Sitophilus zeamais Motschulsky), mold (Aspergillus flavus Link) and sprout-damaged maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench). Journal of Cereal Science, 2012, 55, 285-292.	1.8	11

 $Identification \ of \ B6T173 \ (ZmPrx35) \ as \ the \ prevailing \ peroxidase \ in \ highly \ insect-resistant \ maize \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \ ETQq0 \ 0 \ 0 \ rgBT \ /Overlock \ 10 \ Tfraction \ (Zea) \ Tj \$

54

#	Article	IF	CITATIONS
55	Increase of peroxidase activity in tropical maize after recurrent selection to storage pest resistance. Journal of Stored Products Research, 2018, 75, 47-55.	1.2	11
56	Steroidal Saponin and Flavonol Content and Antioxidant Activity during Sporophyte Development of Maguey (Agave salmiana). Plant Foods for Human Nutrition, 2018, 73, 287-294.	1.4	11
57	Mapping of maize storage losses due to insect pests in central Mexico. Journal of Stored Products Research, 2019, 84, 101529.	1.2	10
58	Influence of genotype and environmental adaptation into the maize grain quality traits for nixtamalization. CYTA - Journal of Food, 2013, 11, 54-61.	0.9	9
59	Compositional Variation in Trans-Ferulic, p-coumaric, and Diferulic Acids Levels Among Kernels of Modern and Traditional Maize (Zea mays L.) Hybrids. Frontiers in Nutrition, 2020, 7, 600747.	1.6	9
60	Studying Mixing in Non-Newtonian Blue Maize Flour Suspensions Using Color Analysis. PLoS ONE, 2014, 9, e112954.	1.1	8
61	Physical Properties and Chemical Characterization of Macro- and Micro-Nutriments of Elite Blue Maize Hybrids (<i>Zea mays</i> L.). Cereal Research Communications, 2015, 43, 295-306.	0.8	8
62	Screening of major phenolics and antioxidant activities in teosinte populations and modern maize types. Journal of Cereal Science, 2018, 79, 276-285.	1.8	8
63	Assessment of potential impacts associated with gene flow from transgenic hybrids to Mexican maize landraces. Transgenic Research, 2019, 28, 509-523.	1.3	8
64	IDENTIFICATION OF MAIZE LANDRACES WITH HIGH LEVEL OF RESISTANCE TO STORAGE PESTS Sitophilus zeamais Motschulsky AND Prostephanus truncatus Horn IN LATIN AMERICA. Revista Fitotecnia Mexicana, 2013, 36, 347.	0.0	8
65	Susceptibility of different types of sorghums during storage to Sitophilus zeamais Motschulsky. Journal of Stored Products Research, 2013, 54, 34-40.	1.2	7
66	A 3-SPS-1S parallel robot-based laser sensing for applications in precision agriculture. Soft Computing, 2017, 21, 641-650.	2.1	7
67	Transient co-expression with three O-glycosylation enzymes allows production of GalNAc-O-glycosylated Granulocyte-Colony Stimulating Factor in N. benthamiana. Plant Methods, 2018, 14, 98.	1.9	7
68	Comparison of the processing and quality of tortillas produced from larger grain borer Prostephanus truncatus (Horn.) resistant and susceptible maize genotypes. Journal of Stored Products Research, 2013, 55, 99-105.	1.2	6
69	A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions. Journal of Chemical Education, 2014, 91, 1729-1735.	1.1	6
70	Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications. PLoS ONE, 2015, 10, e0122489.	1.1	6
71	Effects of saline elicitors on saponin production in Agave salmiana plants grown in vitro. Plant Physiology and Biochemistry, 2021, 162, 476-482.	2.8	5
72	nurP28, a New-to-Nature Zein-Derived Peptide, Enhances the Therapeutic Effect of Docetaxel in Breast Cancer Monolayers and Spheroids. Molecules, 2022, 27, 2824.	1.7	5

#	Article	IF	CITATIONS
73	Phytochemical Profiles and Nutraceutical Properties of Corn and Wheat Tortillas., 2015,, 65-96.		4
74	Cereals: Storage. , 2016, , 712-717.		4
75	Prediction of the antioxidant capacity of maize (Zea mays) hybrids using mass fingerprinting and data mining. Food Bioscience, 2020, 37, 100647.	2.0	4
76	Modulation of Aleurone Peroxidases in Kernels of Insect-Resistant Maize (Zea mays L.; Pob84-C3R) After Mechanical and Insect Damage. Frontiers in Plant Science, 2020, 11, 781.	1.7	3
77	Effect of the Addition of Different Vegetal Mixtures on the Nutritional, Functional, and Sensorial Properties of Snacks Based on Pseudocereals. Foods, 2021, 10, 2271.	1.9	3
78	Physicochemical characterization of the anatomical structures of teosinte (Zea mays subsp. mexicana) covered caryopses Journal of Cereal Science, 2021, , 103353.	1.8	2
79	PRESSURE GRADIENTS APPLICATION FOR ACCELERATING CORN HYDRATION. Revista Mexicana De Ingeniera Quimica, 2018, 17, 669-677.	0.2	2
80	Phenotypic traits of Mexican soybean seeds and their correlation with in vitro shoot induction and susceptibility to Agrobacterium infection. Acta Botanica Mexicana, 2019, , .	0.1	2
81	Physical and chemical parameters, Fusarium verticillioides growth and fumonisin production in kernels of nine maize genotypes. Journal of Cereal Science, 2020, 96, 103128.	1.8	1
82	Novel \hat{l}_{\pm} -zein peptide fractions with in vitro cytotoxic activity against hepatocarcinoma. Food and Bioproducts Processing, 2022, 135, 48-59.	1.8	1
83	In Vitro Germination and Initial Seedling Development of Krantz Aloe by Smoke-saturated Water and Seed Imbibition. HortTechnology, 2020, 30, 619-623.	0.5	0
84	Constitutive Changes in Nutrients and Phytochemicals in Kernels of Aluminium-Tolerant Maize (Zea) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Tf 5
85	Novel method for detecting and quantifying residual bran and germ tissues in refined maize grits. Cereal Chemistry, 0, , .	1.1	0