
Timur Burganov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4053554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Growth, Dynamic and Charge Transfer Properties of New Coronene Charge Transfer Complexes. Crystal Growth and Design, 2016, 16, 331-338.	3.0	45
2	Zn and Co redox active coordination polymers as efficient electrocatalysts. Dalton Transactions, 2019, 48, 3601-3609.	3.3	41
3	ls There a Simple Way to Reliable Simulations of Infrared Spectra of Organic Compounds?. Journal of Physical Chemistry A, 2013, 117, 6664-6670.	2.5	33
4	Iron-catalyzed electrochemical C–H perfluoroalkylation of arenes. Dalton Transactions, 2015, 44, 19674-19681.	3.3	31
5	Conjugation in and Optical Properties of 1- <i>R</i> -1,2-Diphospholes and 1- <i>R</i> -Phospholes. Journal of Physical Chemistry A, 2014, 118, 12168-12177.	2.5	30
6	Composite materials containing chromophores with 3,7-(di)vinylquinoxalinone π-electron bridge doped into PMMA: Atomistic modeling and measurements of quadratic nonlinear optical activity. Dyes and Pigments, 2018, 158, 131-141.	3.7	29
7	High thermally stable D–π–A chromophores with quinoxaline moieties in the conjugated bridge: Synthesis, DFT calculations and physical properties. Dyes and Pigments, 2018, 156, 175-184.	3.7	27
8	Application of Time-Dependent Density Functional Theory and Optical Spectroscopy toward the Rational Design of Novel 3,4,5-Triaryl-1-R-1,2-diphospholes. Journal of Physical Chemistry A, 2013, 117, 6827-6834.	2.5	24
9	Push–pull isomeric chromophores with vinyl- and divinylquinoxaline-2-one units as π-electron bridge: Synthesis, photophysical, thermal and electro-chemical properties. Dyes and Pigments, 2017, 146, 82-91.	3.7	23
10	Novel amphiphilic conjugates of p-tert-butylthiacalix[4]arene with 10,12-pentacosadiynoic acid in 1,3-alternate stereoisomeric form. Synthesis and chromatic properties in the presence of metal ions. New Journal of Chemistry, 2018, 42, 2942-2951.	2.8	22
11	Large nonlinear optical activity of chromophores with divinylquinoxaline conjugated ï€-bridge. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 370, 58-66.	3.9	22
12	Novel quinoxalinone-based push–pull chromophores with highly sensitive emission and absorption properties towards small structural modifications. Physical Chemistry Chemical Physics, 2018, 20, 21515-21527.	2.8	21
13	Isomeric indolizine-based π-expanded push–pull NLO-chromophores: Synthesis and comparative study. Journal of Molecular Structure, 2018, 1156, 74-82.	3.6	16
14	One-pot synthesis of aryl-substituted 1,2,3-triphospholide anions. Journal of Organometallic Chemistry, 2017, 844, 1-7.	1.8	14
15	Supramolecular Organization of Solid Azobenzene Chromophore Disperse Orange 3, Its Chloroform Solutions, and PMMA-Based Films. Journal of Physical Chemistry C, 2018, 122, 1779-1785.	3.1	13
16	Nonlinear optical activity of push–pull indolizine-based chromophores with various acceptor moieties. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 764-772.	3.9	13
17	To what extent are the photophysical properties of quinoxaline- and quinoxalinone-based chromophores predictable?. Dyes and Pigments, 2019, 170, 107580.	3.7	13
18	Comparative Study of Conjugational Effects in 3,4,5-Triaryl-1- <i>R</i> -1,2-Diphospholes and 3,4,5-Triaryl-1,2-Diphosphacyclopentadienide-Anions. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 858-862.	1.6	12

TIMUR BURGANOV

#	Article	IF	CITATIONS
19	Benzimidazolylquinoxalines: novel fluorophores with tuneable sensitivity to solvent effects. Physical Chemistry Chemical Physics, 2017, 19, 6095-6104.	2.8	11
20	Synthesis, spatial and electronic structure of 1-(+)-neomenthyl-1,2-diphosphole and 1-(+)-neomenthyl-1,2,4-triphosphole tungstenpentacarbonyl complexes. Journal of Organometallic Chemistry, 2018, 867, 125-132.	1.8	11
21	Novel enantiopure monophospholes: synthesis, spatial and electronic structure, photophysical characteristics and conjugation effects. Dalton Transactions, 2018, 47, 11521-11529.	3.3	11
22	Conjugation effects and optical spectra of 1,2-diphosphole cycloadducts. Russian Chemical Bulletin, 2015, 64, 1896-1900.	1.5	10
23	The influence of different substituents on the geometrical changes in the heterocyclic moiety of 1,2-diphospholes. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 1646-1649.	1.6	10
24	Theoretical study of the excited state properties of luminescent phospholes. Dyes and Pigments, 2019, 164, 363-371.	3.7	9
25	Indolizine-based chromophores with octatetraene π-bridge and tricyanofurane acceptor: Synthesis, photophysical, electrochemical and electro-optic properties. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112125.	3.9	9
26	Synthesis and photophysical properties of 2,3,4,5-tetraphenyl-1-n-octyl-1-monophosphole. Russian Chemical Bulletin, 2019, 68, 445-448.	1.5	8
27	D-ï€-A'-ï€-A chromophores with quinoxaline core in the ï€-electron bridge and charged heterocyclic acceptor moiety: Synthesis, DFT calculations, photophysical and electro-chemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407, 113042.	3.9	8
28	A fresh look at participation of phosphorus atom in conjugation. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 417-422.	1.6	6
29	The effect of stacking arrangement on the conjugation in azochromophores revealed by combination of Raman spectroscopy and DFT calculations. Chemical Physics Letters, 2016, 659, 242-246.	2.6	5
30	Stimuli-responsive emission of quinoxalinone-based compounds. From experimental findings to theoretical insight by means of multiscale computational spectroscopy approaches. Dyes and Pigments, 2021, 184, 108797.	3.7	5
31	A rational synthetic approach to 2,3,4,5-tetraphenyl-1-monophosphole and its derivatives. Inorganic Chemistry Communication, 2021, 134, 108949.	3.9	3
32	2,3-(Dibenzimidazol-2-yl)quinoxalines: Unexpected Dynamical Effect on Steady-State Electronic Absorption Spectra. Journal of Physical Chemistry B, 2019, 123, 5514-5523.	2.6	2
33	Characterization of Conjugation Effects in the Series of Quinoxaline-2-ones by Means of Vibrational Raman Spectroscopy. Journal of Physical Chemistry A, 2020, 124, 3865-3875.	2.5	2
34	Synthesis and optical properties of chromophores with a methoxyphenylindolizine moiety. AIP Conference Proceedings, 2022, , .	0.4	1
35	Chromophores Supramolecular Organization in Polymer Materials with Quadratic Nonlinear-Optical Activity: Symmetry Aspects. Proceedings (mdpi), 2018, 2, 70.	0.2	0
36	Fullerenes C100 and C108: new substructures of higher fullerenes. Structural Chemistry, 2021, 32, 2283-2290.	2.0	0

#	Article	IF	CITATIONS
37	Features of molecular structures of some IPR isomers of C96 fullerene. Structural Chemistry, 0, , 1.	2.0	Ο