
Haibao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4052684/publications.pdf Version: 2024-02-01

HAIRAO TANC

#	Article	IF	CITATIONS
1	Genetic variation underlying kernel size, shape, and color in two interspecific S. bicolor2 × S. halepense subpopulations. Genetic Resources and Crop Evolution, 2022, 69, 1261-1281.	0.8	1
2	Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature Genetics, 2022, 54, 73-83.	9.4	88
3	GC content of plant genes is linked to past gene duplications. PLoS ONE, 2022, 17, e0261748.	1.1	6
4	A comparative genomics examination of desiccation tolerance and sensitivity in two sister grass species. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
5	The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Genome Biology, 2022, 23, 75.	3.8	15
6	SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nature Genetics, 2022, 54, 715-724.	9.4	26
7	Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nature Genetics, 2022, 54, 885-896.	9.4	33
8	A highâ€quality <i>Brassica napus</i> genome reveals expansion of transposable elements, subgenome evolution and disease resistance. Plant Biotechnology Journal, 2021, 19, 615-630.	4.1	56
9	Genome sequence and evolution of <i>Betula platyphylla</i> . Horticulture Research, 2021, 8, 37.	2.9	53
10	Chromosome-level genome assembly of a regenerable maize inbred line A188. Genome Biology, 2021, 22, 175.	3.8	32
11	Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics, 2021, 53, 1250-1259.	9.4	157
12	Unzipping haplotypes in diploid and polyploid genomes. Computational and Structural Biotechnology Journal, 2020, 18, 66-72.	1.9	57
13	The water lily genome and the early evolution of flowering plants. Nature, 2020, 577, 79-84.	13.7	238
14	Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell, 2020, 183, 875-889.e17.	13.5	71
15	Factorial estimating assembly base errors using k-mer abundance difference (KAD) between short reads and genome assembled sequences. NAR Genomics and Bioinformatics, 2020, 2, Iqaa075.	1.5	8
16	Nymphaea colorata (Blue-Petal Water Lily). Trends in Genetics, 2020, 36, 718-719.	2.9	3
17	Comparative analysis of sucrose phosphate synthase (SPS) gene family between Saccharum officinarum and Saccharum spontaneum. BMC Plant Biology, 2020, 20, 422.	1.6	27
18	A phased Vanilla planifolia genome enables genetic improvement of flavour and production. Nature Food, 2020, 1, 811-819.	6.2	52

#	Article	IF	CITATIONS
19	Transmission Genetics of a Sorghum bicolor × S. halepense Backcross Populations. Frontiers in Plant Science, 2020, 11, 467.	1.7	10
20	Genome-Wide Characterization of DNase I-Hypersensitive Sites and Cold Response Regulatory Landscapes in Grasses. Plant Cell, 2020, 32, 2457-2473.	3.1	29
21	Precision medicine integrating whole-genome sequencing, comprehensive metabolomics, and advanced imaging. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3053-3062.	3.3	85
22	The evolutionary origin and domestication history of goldfish (<i>Carassius auratus</i>). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29775-29785.	3.3	47
23	Recent polyploidization events in three <i>Saccharum</i> founding species. Plant Biotechnology Journal, 2019, 17, 264-274.	4.1	40
24	Models for Similarity Distributions of Syntenic Homologs and Applications to Phylogenomics. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 727-737.	1.9	11
25	Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants, 2019, 5, 833-845.	4.7	292
26	Single-pollen-cell sequencing for gamete-based phased diploid genome assembly in plants. Genome Research, 2019, 29, 1889-1899.	2.4	28
27	Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genetics, 2019, 15, e1008272.	1.5	103
28	The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 2019, 51, 865-876.	9.4	398
29	Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience, 2019, 8, .	3.3	167
30	Single-base resolution map of evolutionary constraints and annotation of conserved elements across major grass genomes. Genome Biology and Evolution, 2018, 10, 473-488.	1.1	11
31	Comparative Genomics of Pineapple and Other Angiosperm Genomes. Plant Genetics and Genomics: Crops and Models, 2018, , 131-153.	0.3	0
32	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	9.4	463
33	From Alpha-Duplication to Triplication and Sextuplication. Compendium of Plant Genomes, 2018, , 99-109.	0.3	0
34	PGD: Pineapple Genomics Database. Horticulture Research, 2018, 5, 66.	2.9	25
35	The Sequenced Angiosperm Genomes and Genome Databases. Frontiers in Plant Science, 2018, 9, 418.	1.7	110
36	Genotype-Corrector: improved genotype calls for genetic mapping in F2 and RIL populations. Scientific Reports, 2018, 8, 10088.	1.6	22

#	Article	IF	CITATIONS
37	GOATOOLS: A Python library for Gene Ontology analyses. Scientific Reports, 2018, 8, 10872.	1.6	717
38	Cataloging Plant Genome Structural Variations. Current Issues in Molecular Biology, 2018, 27, 181-194.	1.0	6
39	Long-read sequencing uncovers the adaptive topography of a carnivorous plant genome. Proceedings of the United States of America, 2017, 114, E4435-E4441.	3.3	95
40	Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6133-6138.	3.3	160
41	Water lilies as emerging models for Darwin's abominable mystery. Horticulture Research, 2017, 4, 17051.	2.9	30
42	The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nature Communications, 2017, 8, 1279.	5.8	240
43	Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes. American Journal of Human Genetics, 2017, 101, 700-715.	2.6	142
44	PacBio Sequencing Reveals Transposable Elements as a Key Contributor to Genomic Plasticity and Virulence Variation in Magnaporthe oryzae. Molecular Plant, 2017, 10, 1465-1468.	3.9	100
45	Identification of individuals by trait prediction using whole-genome sequencing data. Proceedings of the United States of America, 2017, 114, 10166-10171.	3.3	118
46	Disentangling a polyploid genome. Nature Plants, 2017, 3, 688-689.	4.7	15
47	The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nature Communications, 2017, 8, 1899.	5.8	159
48	The pomegranate (<i>Punica granatum</i> L.) genome and the genomics of punicalagin biosynthesis. Plant Journal, 2017, 91, 1108-1128.	2.8	109
49	Cataloging Plant Genome Structural Variations. , 2017, , .		0
50	Comparative genomic deâ€convolution of the cotton genome revealed a decaploid ancestor and widespread chromosomal fractionation. New Phytologist, 2016, 209, 1252-1263.	3.5	65
51	The Genome of a Southern Hemisphere Seagrass Species (<i>Zostera muelleri</i>). Plant Physiology, 2016, 172, 272-283.	2.3	88
52	Rapid proliferation and nucleolar organizer targeting centromeric retrotransposons in cotton. Plant Journal, 2016, 88, 992-1005.	2.8	33
53	Two Paleo-Hexaploidies Underlie Formation of Modern Solanaceae Genome Structure. Compendium of Plant Genomes, 2016, , 201-216.	0.3	0
54	The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses. Molecular Biology and Evolution, 2016, 33, 2417-2428.	3.5	42

#	Article	IF	CITATIONS
55	The pangenome of an agronomically important crop plant Brassica oleracea. Nature Communications, 2016, 7, 13390.	5.8	375
56	Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species. Scientific Reports, 2016, 6, 25591.	1.6	62
57	Insight into the evolution of the Solanaceae from the parental genomes of Petunia hybrida. Nature Plants, 2016, 2, 16074.	4.7	311
58	A phylogenomic assessment of ancient polyploidy and genome evolution across the Poales. Genome Biology and Evolution, 2016, 8, evw060.	1.1	117
59	The Trees in the Peaks. Lecture Notes in Computer Science, 2016, , 3-14.	1.0	4
60	Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. ELife, 2016, 5, .	2.8	130
61	Polyribosomal RNA-Seq Reveals the Decreased Complexity and Diversity of the Arabidopsis Translatome. PLoS ONE, 2015, 10, e0117699.	1.1	40
62	SynFind: Compiling Syntenic Regions across Any Set of Genomes on Demand. Genome Biology and Evolution, 2015, 7, 3286-3298.	1.1	70
63	Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature, 2015, 527, 508-511.	13.7	291
64	Optical mapping in plant comparative genomics. GigaScience, 2015, 4, 3.	3.3	41
65	ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biology, 2015, 16, 3.	3.8	340
66	The pineapple genome and the evolution of CAM photosynthesis. Nature Genetics, 2015, 47, 1435-1442.	9.4	472
67	MTGD: The Medicago truncatula Genome Database. Plant and Cell Physiology, 2015, 56, e1-e1.	1.5	83
68	Consequences of Whole-Genome Triplication as Revealed by Comparative Genomic Analyses of the Wild Radish <i>Raphanus raphanistrum</i> and Three Other Brassicaceae Species Â. Plant Cell, 2014, 26, 1925-1937.	3.1	137
69	A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genomics, 2014, 15, 966.	1.2	29
70	Insights into the Common Ancestor of Eudicots. Advances in Botanical Research, 2014, 69, 137-174.	0.5	1
71	Early History of the Angiosperms. Advances in Botanical Research, 2014, 69, 195-222.	0.5	6
72	Integrated Syntenic and Phylogenomic Analyses Reveal an Ancient Genome Duplication in Monocots. Plant Cell, 2014, 26, 2792-2802.	3.1	220

#	Article	IF	CITATIONS
73	An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics, 2014, 15, 312.	1.2	381
74	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	6.0	2,089
75	Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biology, 2014, 15, R77.	13.9	456
76	Syntenic Sequence Conservation Between and Within Papaya Genes. , 2014, , 205-224.		0
77	The <i>Amborella</i> Genome and the Evolution of Flowering Plants. Science, 2013, 342, 1241089.	6.0	743
78	The dynamics of functional classes of plant genes in rediploidized ancient polyploids. BMC Bioinformatics, 2013, 14, S19.	1.2	17
79	Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biology, 2013, 14, R41.	13.9	329
80	Comparative Genomics of Grasses: A Saccharinae-Centric View. , 2013, , 429-445.		1
81	Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proceedings of the United States of America, 2013, 110, 15824-15829.	3.3	59
82	Unleashing the Genome of Brassica Rapa. Frontiers in Plant Science, 2012, 3, 172.	1.7	44
83	MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40, e49-e49.	6.5	4,252
84	PGDD: a database of gene and genome duplication in plants. Nucleic Acids Research, 2012, 41, D1152-D1158.	6.5	544
85	Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics, 2012, 13, 246.	1.2	100
86	Ancient and Recent Polyploidy in Monocots. , 2012, , 93-108.		18
87	Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492, 423-427.	13.7	1,204
88	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	13.7	2,860
89	Altered Patterns of Fractionation and Exon Deletions in <i>Brassica rapa</i> Support a Two-Step Model of Paleohexaploidy. Genetics, 2012, 190, 1563-1574.	1.2	163
90	The Evolution of Genome Structure. International Journal of Evolution, 2012, 01, .	0.5	1

#	Article	IF	CITATIONS
91	The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature, 2011, 480, 520-524.	13.7	1,166
92	A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure. Genome Biology, 2011, 12, R48.	13.9	28
93	Comparative analysis of Gossypium and Vitis genomes indicates genome duplication specific to the Gossypium lineage. Genomics, 2011, 97, 313-320.	1.3	20
94	Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms. PLoS ONE, 2011, 6, e28150.	1.1	139
95	Comparative analysis of peanut NBS‣RR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. New Phytologist, 2011, 192, 164-178.	3.5	63
96	The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics, 2011, 43, 1035-1039.	9.4	1,893
97	Screening synteny blocks in pairwise genome comparisons through integer programming. BMC Bioinformatics, 2011, 12, 102.	1.2	142
98	Gobe: an interactive, web-based tool for comparative genomic visualization. Bioinformatics, 2011, 27, 1015-1016.	1.8	7
99	Seventy Million Years of Concerted Evolution of a Homoeologous Chromosome Pair, in Parallel, in Major Poaceae Lineages. Plant Cell, 2011, 23, 27-37.	3.1	80
100	Different Gene Families in Arabidopsis thaliana Transposed in Different Epochs and at Different Frequencies throughout the Rosids. Plant Cell, 2011, 23, 4241-4253.	3.1	41
101	Domestication and plant genomes. Current Opinion in Plant Biology, 2010, 13, 160-166.	3.5	89
102	Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics, 2010, 11, 261.	1.2	175
103	A draft physical map of a D-genome cotton species (Gossypium raimondii). BMC Genomics, 2010, 11, 395.	1.2	48
104	Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 472-477.	3.3	267
105	Insights from the Comparison of Plant Genome Sequences. Annual Review of Plant Biology, 2010, 61, 349-372.	8.6	202
106	Comparative inference of illegitimate recombination between rice and sorghum duplicated genes produced by polyploidization. Genome Research, 2009, 19, 1026-1032.	2.4	83
107	Sixty Million Years in Evolution of Soft Grain Trait in Grasses: Emergence of the Softness Locus in the Common Ancestor of Pooideae and Ehrhartoideae, after their Divergence from Panicoideae. Molecular Biology and Evolution, 2009, 26, 1651-1661.	3.5	46
108	Comparative Genomics of Grasses Promises a Bountiful Harvest. Plant Physiology, 2009, 149, 125-131.	2.3	42

#	Article	IF	CITATIONS
109	QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Research, 2009, 37, e101-e101.	6.5	222
110	Duplication and Divergence of Grass Genomes: Integrating the Chloridoids. Tropical Plant Biology, 2009, 2, 51-62.	1.0	23
111	Evolutionary fate of rhizome-specific genes in a non-rhizomatous Sorghum genotype. Heredity, 2009, 102, 266-273.	1.2	30
112	The Sorghum bicolor genome and the diversification of grasses. Nature, 2009, 457, 551-556.	13.7	2,642
113	Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology, 2009, 10, R68.	13.9	144
114	Haplotype inference using a genetic algorithm. , 2009, , .		1
115	The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996.	13.7	964
116	Synteny and Collinearity in Plant Genomes. Science, 2008, 320, 486-488.	6.0	1,156
117	Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Research, 2008, 18, 1944-1954.	2.4	515
118	Finding and Comparing Syntenic Regions among Arabidopsis and the Outgroups Papaya, Poplar, and Grape: CoGe with Rosids. Plant Physiology, 2008, 148, 1772-1781.	2.3	376
119	Extensive Concerted Evolution of Rice Paralogs and the Road to Regaining Independence. Genetics, 2007, 177, 1753-1763.	1.2	85
120	Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnLâ€F sequences. New Phytologist, 2006, 170, 411-420.	3.5	148
121	Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13206-13211.	3.3	141