Carmen RemuñÃ;n-López

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4052608/publications.pdf

Version: 2024-02-01

48 papers 4,292 citations

201674 27 h-index 206112 48 g-index

50 all docs

50 docs citations

50 times ranked

4992 citing authors

#	Article	IF	Citations
1	Dry powders containing chitosan-based nanocapsules for pulmonary administration: Adjustment of spray-drying process and in vitro evaluation in A549 cells. Powder Technology, 2022, 399, 117149.	4.2	6
2	Design of novel orotransmucosal vaccine-delivery platforms using artificial intelligence. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 36-43.	4.3	11
3	Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Delivery and Translational Research, 2021, 11, 598-607.	5.8	9
4	The Bone Regeneration Capacity of BMP-2 + MMP-10 Loaded Scaffolds Depends on the Tissue Status. Pharmaceutics, 2021, 13, 979.	4.5	3
5	Tailored Hydrogels as Delivery Platforms for Conditioned Medium from Mesenchymal Stem Cells in a Model of Acute Colitis in Mice. Pharmaceutics, 2021, 13, 1127.	4.5	14
6	Microencapsulated Chitosan-Based Nanocapsules: A New Platform for Pulmonary Gene Delivery. Pharmaceutics, 2021, 13, 1377.	4.5	7
7	Targeting joint inflammation for osteoarthritis management through stimulus-sensitive hyaluronic acid based intra-articular hydrogels. Materials Science and Engineering C, 2021, 128, 112254.	7.3	20
8	Microencapsulated Isoniazid-Loaded Metal–Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs. Molecules, 2021, 26, 6408.	3.8	9
9	A Traffic Light System to Maximize Carbohydrate Cryoprotectants' Effectivity in Nanostructured Lipid Carriers' Lyophilization. Pharmaceutics, 2021, 13, 1330.	4.5	6
10	New tools to design smart thermosensitive hydrogels for protein rectal delivery in IBD. Materials Science and Engineering C, 2020, 106, 110252.	7.3	26
11	Rifabutin-Loaded Nanostructured Lipid Carriers as a Tool in Oral Anti-Mycobacterial Treatment of Crohn's Disease. Nanomaterials, 2020, 10, 2138.	4.1	10
12	Metal–Organic Framework Microsphere Formulation for Pulmonary Administration. ACS Applied Materials & Discrete Services, 2020, 12, 25676-25682.	8.0	20
13	Recent advances in solid lipid nanoparticles formulation and clinical applications. , 2020, , 213-247.		3
14	Mesenchymal Stem Cells in Homeostasis and Systemic Diseases: Hypothesis, Evidences, and Therapeutic Opportunities. International Journal of Molecular Sciences, 2019, 20, 3738.	4.1	69
15	Current Stage of Marine Ceramic Grafts for 3D Bone Tissue Regeneration. Marine Drugs, 2019, 17, 471.	4.6	21
16	Transfection of pulmonary cells by stable <i>pDNA</i> polycationic hybrid nanostructured particles. Nanomedicine, 2019, 14, 407-429.	3.3	12
17	Delimiting the knowledge space and the design space of nanostructured lipid carriers through Artificial Intelligence tools. International Journal of Pharmaceutics, 2018, 553, 522-530.	5.2	25
18	Micro/nanostructured inhalable formulation based on polysaccharides: Effect of a thermoprotectant on powder properties and protein integrity. International Journal of Pharmaceutics, 2018, 551, 23-33.	5.2	11

#	Article	IF	CITATIONS
19	Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydrate Polymers, 2017, 170, 43-51.	10.2	52
20	Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery. Molecular Pharmaceutics, 2017, 14, 2977-2990.	4.6	55
21	Microencapsulated SLN: An innovative strategy for pulmonary protein delivery. International Journal of Pharmaceutics, 2017, 516, 231-246.	5.2	36
22	Physical Properties and Stability of Soft Gelled Chitosanâ€Based Nanoparticles. Macromolecular Bioscience, 2016, 16, 1873-1882.	4.1	21
23	The role of hyaluronic acid inclusion on the energetics of encapsulation and release of a protein molecule from chitosan-based nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 141, 223-232.	5.0	25
24	Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. International Journal of Pharmaceutics, 2016, 497, 199-209.	5.2	106
25	Hybrid nanosystems based on natural polymers as protein carriers for respiratory delivery: Stability and toxicological evaluation. Carbohydrate Polymers, 2015, 123, 369-380.	10.2	37
26	A micro- and nano-structured drug carrier based on biocompatible, hybrid polymeric nanoparticles for potential application in dry powder inhalation therapy. Polymer, 2014, 55, 4012-4021.	3.8	6
27	Development of PLGA-Mannosamine Nanoparticles as Oral Protein Carriers. Biomacromolecules, 2013, 14, 4046-4052.	5.4	38
28	Pullulan-based nanoparticles as carriers for transmucosal protein delivery. European Journal of Pharmaceutical Sciences, 2013, 50, 102-113.	4.0	67
29	Chitosan–hyaluronic acid nanoparticles for gene silencing: The role of hyaluronic acid on the nanoparticles' formation and activity. Colloids and Surfaces B: Biointerfaces, 2013, 103, 615-623.	5.0	76
30	Microspheres loaded with polysaccharide nanoparticles for pulmonary delivery: Preparation, structure and surface analysis. Carbohydrate Polymers, 2011, 86, 25-34.	10.2	51
31	New Generation of Hybrid Poly/Oligosaccharide Nanoparticles as Carriers for the Nasal Delivery of Macromolecules. Biomacromolecules, 2009, 10, 243-249.	5.4	129
32	Chitosan/cyclodextrin nanoparticles can efficiently transfect the airway epithelium in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 71, 257-263.	4.3	102
33	Chapter 15 Mucosal Delivery of Liposome–Chitosan Nanoparticle Complexes. Methods in Enzymology, 2009, 465, 289-312.	1.0	27
34	Chitosan-Alginate Blended Nanoparticles as Carriers for the Transmucosal Delivery of Macromolecules. Biomacromolecules, 2009, 10, 1736-1743.	5.4	210
35	Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 83-93.	4.3	156
36	Chitosan Nanoparticle-Loaded Mannitol Microspheres: Â Structure and Surface Characterization. Biomacromolecules, 2007, 8, 2072-2079.	5.4	87

#	Article	IF	CITATIONS
37	Development of chitosan sponges for buccal administration of insulin. Carbohydrate Polymers, 2007, 68, 617-625.	10.2	109
38	Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. European Journal of Pharmaceutical Sciences, 2007, 31, 73-84.	4.0	200
39	Formation of New Glucomannanâ^'Chitosan Nanoparticles and Study of Their Ability To Associate and Deliver Proteins. Macromolecules, 2006, 39, 4152-4158.	4.8	86
40	Ionotropic cross-linked chitosan microspheres for controlled release of ampicillin. International Journal of Pharmaceutics, 2006, 312, 166-173.	5.2	166
41	Microencapsulated chitosan nanoparticles for lung protein delivery. European Journal of Pharmaceutical Sciences, 2005, 25, 427-437.	4.0	413
42	The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium. Pharmaceutical Research, 2002, 19, 169-174.	3.5	67
43	Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical Research, 1999, 16, 1576-1581.	3.5	514
44	Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. Journal of Controlled Release, 1998, 55, 143-152.	9.9	183
45	Investigation of a pMDI system containing chitosan microspheres and P134a. International Journal of Pharmaceutics, 1998, 174, 209-222.	5.2	41
46	Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. Journal of Controlled Release, 1997, 44, 215-225.	9.9	246
47	Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharmaceutical Research, 1997, 14, 1431-1436.	3.5	648
48	Mechanical and Water Vapor Transmission Properties of Polysaccharide Films. Drug Development and Industrial Pharmacy, 1996, 22, 1201-1209.	2.0	44