Laurent Djakovitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40524/publications.pdf Version: 2024-02-01

LAUDENT DIAKOVITCH

#	Article	IF	CITATIONS
1	Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Conversion and Biorefinery, 2022, 12, 3795-3808.	4.6	29
2	Production of Phenolic Compounds from Catalytic Oxidation of Kraft Black Liquor in a Continuous Reactor. Industrial & Engineering Chemistry Research, 2022, 61, 7430-7437.	3.7	6
3	Catalytic hydrogenolysis of native and organosolv lignins of aspen wood to liquid products in supercritical ethanol medium. Catalysis Today, 2021, 379, 114-123.	4.4	14
4	Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catalysis Today, 2021, 375, 132-144.	4.4	16
5	Selective Aerobic Oxidation of Benzyl Alcohols with Palladium(0) Nanoparticles Suspension in Water. Catalysis Letters, 2021, 151, 3239-3249.	2.6	6
6	Supported-Metal Catalysts in Upgrading Lignin to Aromatics by Oxidative Depolymerization. Catalysts, 2021, 11, 467.	3.5	24
7	From the grafting of NHC-based Pd(II) complexes onto TiO2 to the in situ generation of Mott-Schottky heterojunctions: The boosting effect in the Suzuki-Miyaura reaction. Do the evolved Pd NPs act as reservoirs?. Journal of Catalysis, 2021, 398, 133-147.	6.2	8
8	Catalytic Liquefaction of Kraft Lignin with Solvothermal Approach. Catalysts, 2021, 11, 875.	3.5	10
9	Reductive or oxidative catalytic lignin depolymerization: An overview of recent advances. Catalysis Today, 2021, 373, 24-37.	4.4	47
10	Heterogenization of Pd(II) complexes as catalysts for the Suzuki-Miyaura reaction. Applied Catalysis A: General, 2021, 627, 118381.	4.3	12
11	Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions. Catalysts, 2021, 11, 1311.	3.5	6
12	A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules, 2021, 26, 6796.	3.8	1
13	Comparative study of solvolysis of technical lignins in flow reactor. Biomass Conversion and Biorefinery, 2020, 10, 351-366.	4.6	16
14	First study on telomerization of chitosan and guar hemicellulose with butadiene: Influence of reaction parameters on the substitution degree of the biopolymers. Molecular Catalysis, 2020, 483, 110706.	2.0	4
15	Insights into the Suzukiâ€Miyaura Reaction Catalyzed by Novel Pdâ^'Carbene Complexes. Are Palladiumâ^'Tetra―carbene Entities the Key Active Species?. ChemCatChem, 2020, 12, 5797-5808.	3.7	6
16	Kinetic Study of the Herrmann–Beller Palladacycle-Catalyzed Suzuki–Miyaura Coupling of 4-Iodoacetophenone and Phenylboronic Acid. Catalysts, 2020, 10, 989.	3.5	3
17	Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood. Topics in Catalysis, 2020, 63, 229-242.	2.8	8
18	First Example of the Use of Biosourced Alkyl Levulinates as Solvents for Synthetic Chemistry: Application to the Heterogeneously Catalyzed Heck Coupling. ChemistrySelect, 2019, 4, 3329-3333.	1.5	8

#	Article	IF	CITATIONS
19	Catalytic peroxide fractionation processes for the green biorefinery of wood. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 717-735.	1.7	8
20	HYDROGENATION OF ABIES WOOD AND ETHANOL-LIGNIN BY MOLECULAR HYDROGEN IN SUPERCRITI-CAL ETHANOL OVER BIFUNCTIONAL RU/C CATALYST. Khimiya Rastitel'nogo Syr'ya, 2019, , 15-26.	0.3	6
21	Kinetic Study and Optimization of Catalytic Peroxide Delignification of Aspen Wood. Kinetics and Catalysis, 2018, 59, 48-57.	1.0	3
22	Thermal conversion of mechanically activated mixtures of aspen wood-zeolite catalysts in a supercritical ethanol. Journal of Analytical and Applied Pyrolysis, 2018, 132, 237-244.	5.5	7
23	Stilbene synthesis through decarboxylative cross-coupling of substituted cinnamic acids with aryl halides. Applied Catalysis A: General, 2018, 560, 132-143.	4.3	8
24	Green catalytic processing of native and organosolv lignins. Catalysis Today, 2018, 309, 18-30.	4.4	23
25	Synthesis and Study of Copper-Containing Polymers of Microcrystalline Cellulose Sulfates from Larch Wood. Russian Journal of Bioorganic Chemistry, 2018, 44, 834-838.	1.0	3
26	Optimizing Single-Stage Processes of Microcrystalline Cellulose Production via the Peroxide Delignification of Wood in the Presence of a Titania Catalyst. Catalysis in Industry, 2018, 10, 360-367.	0.7	12
27	Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Science and Technology, 2018, 52, 1377-1394.	3.2	17
28	Study of the Thermochemical Properties of Ethanol Lignins from Abies and Aspen Wood. Journal of Siberian Federal University: Chemistry, 2018, 11, 401-417.	0.7	1
29	Diffusion of modified vegetables oils in thermoplastic polymers. Materials Chemistry and Physics, 2017, 200, 107-120.	4.0	5
30	Processing Pine Wood into Vanillin and Glucose by Sequential Catalytic Oxidation and Enzymatic Hydrolysis. Journal of Wood Chemistry and Technology, 2017, 37, 43-51.	1.7	42
31	Copper(II)-phenanthroline hybrid material as efficient catalyst for the multicomponent synthesis of 1,2,3-triazoles via sequential azide formation/1,3-dipolar cycloaddition. Molecular Catalysis, 2017, 437, 150-157.	2.0	20
32	Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 81-94.	1.7	14
33	Synthesis and Study of Copper-Containing Polymers Based on Sulfated Arabinogalactan. Russian Journal of Bioorganic Chemistry, 2017, 43, 727-731.	1.0	3
34	ϴϳĐʹĐĐ¢Đ•Đ— Đ˝ Đ˝Đ—Đ£Đ§Đ•ĐнЕ ĐœĐ•Đ˝Đ¬ĐϳОнЕĐĐ–ĐĐ©Đ˝Đ¥ ĐΫĐžĐ›Đ˝ĐœĐ•ĐОВ ĐЕОĐϳĐĐž	Đ' Đ.\$ ¡Đ	£Ð>ЬÐ Ð ТÐ;

35	Synthesis of terpene derivatives of ethanolamine using telomerization reaction. Tetrahedron Letters, 2016, 57, 452-457.	1.4	2
36	Synthesis of Sulfated Arabinogalactan Derivatives with Histidine and Arginine. Journal of Siberian Federal University: Chemistry, 2016, 9, 318-325.	0.7	3

#	Article	IF	CITATIONS
37	From glycerol to lactic acid under inert conditions in the presence of platinum-based catalysts: The influence of support. Catalysis Today, 2015, 257, 267-273.	4.4	61
38	Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Science and Technology, 2015, 49, 825-843.	3.2	14
39	Sulfation of arabinogalactan by sulfamic acid in dioxane. Russian Journal of Bioorganic Chemistry, 2015, 41, 725-731.	1.0	22
40	Composition of Liquid Products of Acetonlignin Conversion Over NiCu/SiO2 Catalysts in Supercritical Butanol. Journal of Siberian Federal University: Chemistry, 2015, 8, 465-475.	0.7	4
41	Decarboxylative Heterocoupling Coupling of Substituted Benzoic Acids for Biaryl Synthesis. Topics in Catalysis, 2014, 57, 1430-1437.	2.8	10
42	Preparation of functional styrenes from biosourced carboxylic acids by copper catalyzed decarboxylation in PEG. Green Chemistry, 2014, 16, 3089.	9.0	39
43	Aqueous Heck Arylation of Acrolein Derivatives: The Role of Cyclodextrin as Additive. Topics in Catalysis, 2014, 57, 1550-1557.	2.8	3
44	Direct C sp ² H and C sp ³ H Arylation Enabled by Heterogeneous Palladiu Catalysts. ChemCatChem, 2014, 6, 2175-2187.	m _{3.7}	81
45	Base directed palladium catalysed Heck arylation of acrolein diethyl acetal in water. Applied Catalysis A: General, 2014, 469, 250-258.	4.3	10
46	₽;₽£₽,₽¬₽ ₽ ₽¢₽~₽₽₹₽`₽₽₽₽`₽•₽₽₽₽`₽°₽₽₹₽"₽₽,₽₽₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	¢ ĐžÐ ™ Đ	' Đử Đ~ОКĐ
47	Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under mild conditions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 271-280.	1.7	12
48	Carbonylative Sonogashira Coupling in the Synthesis of Ynones: A Study of "Boomerang―Phenomena. Advanced Synthesis and Catalysis, 2013, 355, 2604-2616.	4.3	40
49	Synthesis of 2-(arylamino)ethyl phosphonic acids via the aza-Michael addition on diethyl vinylphosphonate. Tetrahedron, 2013, 69, 115-121.	1.9	10
50	Palladium complexes grafted onto mesoporous silica catalysed the double carbonylation of aryl iodides with amines to give α-ketoamides. Catalysis Science and Technology, 2012, 2, 1886.	4.1	42
51	Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones. Chemical Society Reviews, 2012, 41, 3929.	38.1	321
52	Heterogeneous Transformation of Glycerol to Lactic Acid. Topics in Catalysis, 2012, 55, 474-479.	2.8	60
53	Recent Advances in the Synthesis of N-Containing Heteroaromatics via Heterogeneously Transition Metal Catalysed Cross-Coupling Reactions. Molecules, 2011, 16, 5241-5267.	3.8	43
54	On the role of the atmosphere in the catalytic glycerol transformation over iridium-based catalysts. Catalysis Communications, 2011, 16, 144-149.	3.3	67

#	Article	IF	CITATIONS
55	Palladium-based innovative catalytic procedures: Designing new homogeneous and heterogeneous catalysts for the synthesis and functionalisation of N-containing heteroaromatic compounds. Catalysis Today, 2011, 173, 2-14.	4.4	22
56	Heterogeneous metallo-organocatalysis for the selective one-pot synthesis of 2-benzylidene-indoxyl and 2-phenyl-4-quinolone. Tetrahedron, 2011, 67, 976-981.	1.9	39
57	Larock heteroannulation of 2-bromoanilines with internal alkynes via ligand and salt free Pd/C catalysed reaction. Tetrahedron Letters, 2011, 52, 1916-1918.	1.4	30
58	Hydrogenation of cinnamaldehyde with heterogeneous catalyst in the presence of cyclodextrins. Arkivoc, 2011, 2011, 406-415.	0.5	7
59	Direct palladium/copper oxidative cross-coupling of α-methylstyrene with acrylates. Science China Chemistry, 2010, 53, 1927-1931.	8.2	7
60	Oneâ€Pot Suzuki/Heck Sequence for the Synthesis of (<i>E</i>)â€Stilbenes Featuring a Recyclable Silicaâ€Supported Palladium Catalyst <i>via</i> a Multiâ€Component Reaction in 1,3â€Propanediol. Advanced Synthesis and Catalysis, 2010, 352, 1993-2001.	4.3	34
61	"On Water―Direct and Siteâ€Selective Pdâ€Catalysed CH Arylation of (NH)â€Indoles. Advanced Synthesis and Catalysis, 2010, 352, 2929-2936.	4.3	143
62	Larock indole synthesis using palladium complexes immobilized onto mesoporous silica. Applied Catalysis A: General, 2010, 388, 179-187.	4.3	28
63	Synthesis of diethyl 2-(aryl)vinylphosphonate by the Heck reaction catalysed by supported palladium catalysts. Applied Catalysis A: General, 2010, 388, 124-133.	4.3	23
64	Efficient Heterogeneously Palladium-Catalysed Synthesis of Stilbenes and Bibenzyls. Letters in Organic Chemistry, 2009, 6, 77-81.	0.5	14
65	Transition Metalâ€Catalysed, Direct and Siteâ€Selective N1â€, C2―or C3â€Arylation of the Indole Nucleus: 20 Years of Improvements. Advanced Synthesis and Catalysis, 2009, 351, 673-714.	4.3	453
66	First Heterogeneous Ligand―and Saltâ€Free Larock Indole Synthesis. Advanced Synthesis and Catalysis, 2009, 351, 2055-2062.	4.3	53
67	Amination of aryl chlorides and fluorides toward the synthesis of aromatic amines by palladium-catalyzed route or transition metal free way: Scopes and limitations. Journal of Molecular Catalysis A, 2009, 303, 15-22.	4.8	18
68	Synthesis of diethyl 2-(aryl)vinylphosphonates by the Heck reaction catalysed by well-defined palladium complexes. Journal of Organometallic Chemistry, 2009, 694, 3222-3231.	1.8	27
69	Environmentally friendly [Pd/Cu]-catalysed C3-alkenylation of free NH-indoles. Catalysis Today, 2009, 140, 90-99.	4.4	27
70	Optimised procedures for the one-pot selective syntheses of indoxyls and 4-quinolones by a carbonylative Sonogashira/cyclisation sequence. Applied Catalysis A: General, 2009, 369, 125-132.	4.3	38
71	Heterogeneously Pd/C catalysed procedure for the vinylation of aryl bromides. Applied Catalysis A: General, 2009, 360, 145-153.	4.3	32
72	Synthesis of 3-Arylpropenal and 3-Arylpropionic Acids by Palladium Catalysed Heck Coupling Reactions: Scopes and Limitations. Current Organic Synthesis, 2009, 6, 54-65.	1.3	8

#	Article	IF	CITATIONS
73	First heterogeneously palladium-catalysed fully selective C3-arylation of free NH-indoles. Tetrahedron Letters, 2008, 49, 2499-2502.	1.4	91
74	Heck arylation of acrolein acetals using the 9-bromoanthracene: A case of study. Journal of Organometallic Chemistry, 2008, 693, 2863-2868.	1.8	13
75	Efficient heterogeneous vinylation of aryl halides using potassium vinyltrifluoroborate. Tetrahedron Letters, 2008, 49, 4738-4741.	1.4	34
76	Asymmetric reduction of ketones with ruthenium-oxazoline based catalysts. Journal of Molecular Catalysis A, 2008, 287, 142-150.	4.8	5
77	Catalytic Hydrogenolysis of Glycerol. Chemical Industries, 2008, , 313-318.	0.1	1
78	Selective arylation of 2-substituted indoles towards 1,2- and 2,3-functional indoles directed through the catalytic system. Catalysis Communications, 2007, 8, 1561-1566.	3.3	24
79	Efficient Heterogeneously Palladium-Catalysed Heck Arylation of Acrolein Diethyl Acetal. Selective Synthesis of Cinnamaldehydesor 3-Arylpropionic Esters. Advanced Synthesis and Catalysis, 2007, 349, 1128-1140.	4.3	37
80	New homogeneously and heterogeneously [Pd/Cu]-catalysed C3-alkenylation of free NH-indoles. Journal of Molecular Catalysis A, 2007, 273, 230-239.	4.8	51
81	Direct synthesis of tricyclic 5H-pyrido[3,2,1-ij]quinolin-3-one by domino palladium catalyzed reaction. Organic and Biomolecular Chemistry, 2006, 4, 3760-3762.	2.8	14
82	New chiral oxazoline based-rhodium(I) catalysts: Synthesis, characterisation, heterogeneisation and applications. Journal of Organometallic Chemistry, 2006, 691, 741-747.	1.8	11
83	Influence of the catalytic conditions on the selectivity of the Pd-catalyzed Heck arylation of acrolein derivatives. Tetrahedron Letters, 2006, 47, 3839-3842.	1.4	28
84	Catalytic Transformations of Carbohydrates. ACS Symposium Series, 2006, , 52-66.	0.5	4
85	Heterogeneous Palladium Catalysts Applied to the Synthesis of 2- and 2,3-Functionalised Indoles. Advanced Synthesis and Catalysis, 2006, 348, 715-724.	4.3	111
86	Can t-BuOK be a good nucleophile? An ion-pairing answer. Cleavage of aryl ethers in their cationic iron complexes. Arkivoc, 2006, 2006, 173-188.	0.5	5
87	Copper-free heterogeneous catalysts for the Sonogashira cross-coupling reaction: Preparation, characterisation, activity and applications for organic synthesis. Journal of Molecular Catalysis A, 2005, 241, 39-51.	4.8	99
88	Palladium on activated carbon: a valuable heterogeneous catalyst for one-pot multi-step synthesis. Applied Catalysis A: General, 2004, 265, 161-169.	4.3	108
89	Pd-catalyzed Heck arylation of cycloalkenes—studies on selectivity comparing homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A, 2004, 219, 121-130.	4.8	110
90	Sonogashira Cross-Coupling Reactions Catalysed by Copper-Free Palladium Zeolites. Advanced Synthesis and Catalysis, 2004, 346, 1782-1792.	4.3	132

#	Article	IF	CITATIONS
91	Sonogashira Cross-Coupling Reactions Catalyzed by Heterogeneous Copper-Free Pd-Zeolites ChemInform, 2004, 35, no.	0.0	0
92	New Chiral Bis(oxazoline) Rh(I)-, Ir(I)- and Ru(II)-Complexes for Asymmetric Transfer Hydrogenations of Ketones ChemInform, 2004, 35, no.	0.0	0
93	New hetero-bimetallic Pd-Cu catalysts for the one-pot indole synthesis via the Sonogashira reaction. Journal of Molecular Catalysis A, 2004, 212, 43-52.	4.8	54
94	Sonogashira cross-coupling reactions catalysed by heterogeneous copper-free Pd-zeolites. Tetrahedron Letters, 2004, 45, 1367-1370.	1.4	112
95	New chiral bis(oxazoline) Rh(I)-, Ir(I)- and Ru(II)-complexes for asymmetric transfer hydrogenations of ketones. Tetrahedron Letters, 2004, 45, 2235-2238.	1.4	36
96	Glycerol hydrogenolysis on heterogeneous catalysts. Green Chemistry, 2004, 6, 359.	9.0	436
97	Heck Arylation of \hat{I}_{\pm}, \hat{I}^2 -Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2003, 345, 612-619.	4.3	38
98	Dendrimers containing ferrocenyl or other transition-metal sandwich groups. Advances in Dendritic Macromolecules, 2002, , 89-127.	0.6	8
99	Heck Reaction Catalyzed by Pd-Modified Zeolites. Journal of the American Chemical Society, 2001, 123, 5990-5999.	13.7	353
100	Supported palladium as catalyst for carbon–carbon bond construction (Heck reaction) in organic synthesis. Catalysis Today, 2001, 66, 105-114.	4.4	137
101	First heterogeneously palladium catalysed α-arylation of diethyl malonate. Journal of Organometallic Chemistry, 2000, 606, 101-107.	1.8	35
102	Heck reactions catalyzed by oxide-supported palladium – structure–activity relationships. Topics in Catalysis, 2000, 13, 319-326.	2.8	93
103	Activation of aryl ethers and aryl sulfides by the Fe(η5-C5H5)+ group for the synthesis of phenol dendrons and arene-centered poly-olefin dendrimers. New Journal of Chemistry, 2000, 24, 351-370.	2.8	23
104	The First Organometallic Dendrimers: Design and Redox Functions. , 2000, , 229-259.		42
105	Heck reactions between aryl halides and olefins catalysed by Pd-complexes entrapped into zeolites NaY. Journal of Organometallic Chemistry, 1999, 584, 16-26.	1.8	77
106	Amination of aryl bromides catalysed by supported palladium. Journal of Organometallic Chemistry, 1999, 592, 225-234.	1.8	37
107	Heterogeneously catalysed Heck reaction using palladium modified zeolites. Journal of Molecular Catalysis A, 1999, 142, 275-284.	4.8	120
108	Synthesis of cyclic ethers and allylic sulfides by rearrangement of phenylsulfanyl substituted 1,n-diols with toluene-p-sulfonic acid and with toluene-p-sulfonyl chloride. Journal of the Chemical Society Perkin Transactions 1, 1999, , 2771-2782.	0.9	5

#	Article	IF	CITATIONS
109	Organoiron Route to a New Dendron for Fast Dendritic Syntheses Using Divergent and Convergent Methods. Journal of the American Chemical Society, 1999, 121, 2929-2930.	13.7	113
110	Half-sandwich and ansa-niobiocenes: synthesis and reactivity. Journal of Organometallic Chemistry, 1998, 562, 71-78.	1.8	15
111	Bridged half-sandwich niobiocenes by intramolecular CH activation. Journal of Organometallic Chemistry, 1997, 545-546, 399-405.	1.8	15
112	Rearrangements of phenylthio substituted 1,n-diols with toluene-p-sulfonic acid and with toluene-p-sulfonyl chloride. Tetrahedron Letters, 1995, 36, 1723-1726.	1.4	27
113	Heterolytic C–O cleavage in arylethers activated by [Fe(η5-C5H5)]+. Journal of the Chemical Society Chemical Communications, 1995, , 463-464.	2.0	24
114	Organometallic Molecular Trees as Multielectron and Multiproton Reservoirs: CpFe+-Induced Nonaallylation of Mesitylene and Phase-Transfer Catalyzed Synthesis of a Redox-Active Nonairon Complex. Angewandte Chemie International Edition in English, 1993, 32, 1075-1077.	4.4	136
115	Metallorganische molekulare Bäme als Mehrelektronen―und Mehrprotonenspeicher: CpFe ⁺ â€induzierte Nonaallylierung von Mesitylen und phasentransferkatalysierte Synthese eines redoxaktiven Nonaeisenkomplexes. Angewandte Chemie, 1993, 105, 1132-1134.	2.0	42
116	HexahydrozirconationversusHexahydroboration Routes to Hexaiodo Tentacled Aromatic Iron Sandwiches. Synlett, 1992, 1992, 57-58.	1.8	13