Yiling Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405223/publications.pdf

Version: 2024-02-01

50 papers

4,165 citations

147801 31 h-index 55 g-index

56 all docs 56
docs citations

56 times ranked 5027 citing authors

#	Article	IF	CITATIONS
1	DAMPs/PAMPs induce monocytic TLR activation and tolerance in COVID-19 patients; nucleic acid binding scavengers can counteract such TLR agonists. Biomaterials, 2022, 283, 121393.	11.4	34
2	Design of therapeutic biomaterials to control inflammation. Nature Reviews Materials, 2022, 7, 557-574.	48.7	187
3	A Cationic Metal–Organic Framework to Scavenge Cell-Free DNA for Severe Sepsis Management. Nano Letters, 2021, 21, 2461-2469.	9.1	39
4	Fluorescein sodium ligand-modified silicon nanoparticles produce ultrahigh fluorescence with robust pH- and photo-stability. Chemical Communications, 2019, 55, 365-368.	4.1	19
5	Aqueous synthesis of three-dimensional fluorescent silicon-based nanoscale networks featuring unusual anti-photobleaching properties. Chemical Communications, 2019, 55, 652-655.	4.1	4
6	Photostable and Biocompatible Fluorescent Silicon Nanoparticles for Imaging-Guided Co-Delivery of siRNA and Doxorubicin to Drug-Resistant Cancer Cells. Nano-Micro Letters, 2019, 11, 27.	27.0	36
7	Fluorescent and magnetic anti-counterfeiting realized by biocompatible multifunctional silicon nanoshuttle-based security ink. Nanoscale, 2018, 10, 1617-1621.	5 . 6	107
8	The in vivo targeted molecular imaging of fluorescent silicon nanoparticles in Caenorhabditis elegans. Nano Research, 2018, 11, 2336-2346.	10.4	33
9	Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live <i>C. elegans</i> Nanoscale, 2018, 10, 23059-23069.	5 . 6	9
10	Biocompatible protamine sulfate@silicon nanoparticle-based gene nanocarriers featuring strong and stable fluorescence. Nanoscale, 2018, 10, 14455-14463.	5. 6	16
11	In vitro cellular behaviors and toxicity assays of small-sized fluorescent silicon nanoparticles. Nanoscale, 2017, 9, 7602-7611.	5 . 6	41
12	One-dimensional silicon nanoshuttles simultaneously featuring fluorescent and magnetic properties. Chemical Communications, 2017, 53, 6957-6960.	4.1	9
13	Subcellular distribution and cellular self-repair ability of fluorescent quantum dots emitting in the visible to near-infrared region. Nanotechnology, 2017, 28, 045101.	2.6	6
14	Linking Subcellular Disturbance to Physiological Behavior and Toxicity Induced by Quantum Dots in <i>Caenorhabditis elegans</i>). Small, 2016, 12, 3143-3154.	10.0	22
15	Plant-derived fluorescent silicon nanoparticles featuring excitation wavelength-dependent fluorescence spectra for anti-counterfeiting applications. Chemical Communications, 2016, 52, 7047-7050.	4.1	65
16	In situ rapid growth of fluorescent silicon nanoparticles at room temperature and under atmospheric pressure. Chemical Communications, 2016, 52, 13444-13447.	4.1	14
17	Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Research, 2016, 9, 3027-3037.	10.4	19
18	Aqueous synthesized quantum dots interfere with the NF- $\hat{\mathbb{P}}$ B pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials, 2016, 108, 187-196.	11.4	37

#	Article	IF	Citations
19	One-Dimensional Fluorescent Silicon Nanorods Featuring Ultrahigh Photostability, Favorable Biocompatibility, and Excitation Wavelength-Dependent Emission Spectra. Journal of the American Chemical Society, 2016, 138, 4824-4831.	13.7	88
20	Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. Applied Physics Letters, 2015, 106, .	3.3	25
21	Facile, Large-Quantity Synthesis of Stable, Tunable-Color Silicon Nanoparticles and Their Application for Long-Term Cellular Imaging. ACS Nano, 2015, 9, 5958-5967.	14.6	209
22	Largeâ€Scale Green Synthesis of Fluorescent Carbon Nanodots and Their Use in Optics Applications. Advanced Optical Materials, 2015, 3, 103-111.	7.3	93
23	Silicon Drug Nanocarriers: Highly Fluorescent, Photostable, and Ultrasmall Silicon Drug Nanocarriers for Longâ€Term Tumor Cell Tracking and Inâ€Vivo Cancer Therapy (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1131-1131.	21.0	2
24	Peptide-Conjugated Fluorescent Silicon Nanoparticles Enabling Simultaneous Tracking and Specific Destruction of Cancer Cells. Analytical Chemistry, 2015, 87, 6718-6723.	6.5	71
25	Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles. Journal of the American Chemical Society, 2015, 137, 14726-14732.	13.7	111
26	Highly Fluorescent, Photostable, and Ultrasmall Silicon Drug Nanocarriers for Longâ€Term Tumor Cell Tracking and Inâ€Vivo Cancer Therapy. Advanced Materials, 2015, 27, 1029-1034.	21.0	105
27	Silicon Nanomaterials Platform for Bioimaging, Biosensing, and Cancer Therapy. Accounts of Chemical Research, 2014, 47, 612-623.	15.6	445
28	Silicon nanowire-based therapeutic agents for in vivo tumor near-infrared photothermal ablation. Journal of Materials Chemistry B, 2014, 2, 2892.	5.8	5
29	Stem-loop DNA-assisted silicon nanowires-based biochemical sensors with ultra-high sensitivity, specificity, and multiplexing capability. Nanoscale, 2014, 6, 9215.	5.6	25
30	Fluorescent quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids and Surfaces B: Biointerfaces, 2014, 124, 132-139.	5.0	75
31	Doxorubicin-loaded silicon nanowires for the treatment of drug-resistant cancer cells. Biomaterials, 2014, 35, 5188-5195.	11.4	64
32	DNA Detection: A Molecular Beacon-Based Signal-Off Surface-Enhanced Raman Scattering Strategy for Highly Sensitive, Reproducible, and Multiplexed DNA Detection (Small 15/2013). Small, 2013, 9, 2652-2652.	10.0	2
33	Siliconâ€Nanowireâ€Based Nanocarriers with Ultrahigh Drugâ€Loading Capacity for Inâ€Vitro and Inâ€Vivo Cancer Therapy. Angewandte Chemie - International Edition, 2013, 52, 1457-1461.	13.8	115
34	Large-Scale Aqueous Synthesis of Fluorescent and Biocompatible Silicon Nanoparticles and Their Use as Highly Photostable Biological Probes. Journal of the American Chemical Society, 2013, 135, 8350-8356.	13.7	386
35	A Silicon Nanowireâ€Based Electrochemical Sensor with High Sensitivity and Electrocatalytic Activity. Particle and Particle Systems Characterization, 2013, 30, 326-331.	2.3	25
36	A Molecular Beaconâ∈Based Signalâ€Off Surfaceâ€Enhanced Raman Scattering Strategy for Highly Sensitive, Reproducible, and Multiplexed DNA Detection. Small, 2013, 9, 2493-2499.	10.0	87

#	Article	IF	Citations
37	InÂvivo behavior of near infrared-emitting quantum dots. Biomaterials, 2013, 34, 4302-4308.	11.4	42
38	Surface-Enhanced Raman Scattering-Based Sensing In Vitro: Facile and Label-Free Detection of Apoptotic Cells at the Single-Cell Level. Analytical Chemistry, 2013, 85, 2809-2816.	6.5	85
39	Photostable water-dispersible NIR-emitting CdTe/CdS/ZnS core–shell–shell quantum dots for high-resolution tumor targeting. Biomaterials, 2013, 34, 9509-9518.	11.4	47
40	Aqueous synthesized near-infrared-emitting quantum dots for RGD-based <i>in vivo</i> active tumour targeting. Nanotechnology, 2013, 24, 135101.	2.6	36
41	A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection. Nanotechnology, 2013, 24, 444012.	2.6	4
42	Gold Nanoparticles-Decorated Silicon Nanowires as Highly Efficient Near-Infrared Hyperthermia Agents for Cancer Cells Destruction. Nano Letters, 2012, 12, 1845-1850.	9.1	162
43	Silicon Nanowire-Based Molecular Beacons for High-Sensitivity and Sequence-Specific DNA Multiplexed Analysis. ACS Nano, 2012, 6, 2582-2590.	14.6	100
44	Microwaveâ€Assisted Synthesis of Biofunctional and Fluorescent Silicon Nanoparticles Using Proteins as Hydrophilic Ligands. Angewandte Chemie - International Edition, 2012, 51, 8485-8489.	13.8	123
45	One-Pot Microwave Synthesis of Water-Dispersible, Ultraphoto- and pH-Stable, and Highly Fluorescent Silicon Quantum Dots. Journal of the American Chemical Society, 2011, 133, 14192-14195.	13.7	249
46	Waterâ€Dispersed Nearâ€Infraredâ€Emitting Quantum Dots of Ultrasmall Sizes for Inâ€Vitro and Inâ€Vivo Imaging. Angewandte Chemie - International Edition, 2011, 50, 5695-5698.	13.8	124
47	Highly Luminescent Waterâ€Dispersible Silicon Nanowires for Longâ€Term Immunofluorescent Cellular Imaging. Angewandte Chemie - International Edition, 2011, 50, 3080-3083.	13.8	60
48	Back Cover: Highly Luminescent Waterâ€Dispersible Silicon Nanowires for Longâ€Term Immunofluorescent Cellular Imaging (Angew. Chem. Int. Ed. 13/2011). Angewandte Chemie - International Edition, 2011, 50, 3090-3090.	13.8	0
49	In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials, 2011, 32, 5855-5862.	11.4	177
50	Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection. Nano Today, 2011, 6, 122-130.	11.9	257