List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4051858/publications.pdf Version: 2024-02-01

Πρ Ιλγλειμμλ

#	Article	IF	CITATIONS
1	Thermally stable Mn ²⁺ â€activated zinc silicate nanophosphor for speedy recognition of highâ€contrast latent fingermarks. International Journal of Applied Ceramic Technology, 2022, 19, 488-497.	1.1	3
2	Variable Dielectric and Ferroelectric Properties in Size-Controlled Cobalt Ferrite. Springer Proceedings in Materials, 2022, , 35-40.	0.1	0
3	Deep reddish-orange emitting Sr3Gd(PO4)3: Sm3+ phosphors via modified citrate-gel combustion method. Journal of Molecular Structure, 2022, 1255, 132428.	1.8	9
4	Structural and color tunable properties in Sm3+/Eu3+-doped Ca3Bi(PO4)3 phosphor for solar cell and w-LED applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 5201-5213.	1.1	4
5	Synthesis and luminescence characterization of aqueous stable Sr3MgSi2O8: Eu2+, Dy3+ long afterglow nanophosphor for low light illumination. Journal of Solid State Chemistry, 2022, 310, 123089.	1.4	8
6	Structural and spectroscopic studies of Eu3+ activated potassium bismuth molybdate phosphor for optoelectronic device applications. Materials Today: Proceedings, 2022, 62, 3719-3723.	0.9	1
7	Spectroscopic investigations of Dy ³⁺ â€doped tungstate–tellurite glasses for solidâ€state lighting applications. International Journal of Applied Glass Science, 2022, 13, 645-654.	1.0	5
8	UVâ€excited blue―to greenâ€emitting Tb ³⁺ â€activated sodium calcium metasilicate colour tunable phosphor for luminescence devices. Luminescence, 2022, 37, 1465-1474.	1.5	5
9	Temperature-dependent photoluminescence and optical thermometry performance in Ca3Bi(PO4)3:Er3+ phosphors. Solid State Sciences, 2022, 131, 106956.	1.5	8
10	Multicolor emission and energy transfer dynamics in thermally stable Dy3+/Eu3+ co-doped ZPBT glasses for epoxy free w-LEDs application. Journal of Non-Crystalline Solids, 2021, 553, 120516.	1.5	18
11	Structural and impedance spectroscopy in BiFeO3–BiCoO3–BaTiO3 ternary system. Materials Today: Proceedings, 2021, 47, 1696-1699.	0.9	1
12	Structural and spectroscopic properties of Sm3+-doped NaBaB9O15 phosphor for optoelectronic device applications. Journal of Materials Science: Materials in Electronics, 2021, 32, 1650-1658.	1.1	9
13	Multiferroic and magnetodielectric properties of Co0.5Ni0.5Fe2O4 - BaTiO3 composites. AIP Conference Proceedings, 2021, , .	0.3	0
14	Tunable dielectric and energy storage studies in NdMnO3 based composites. Materials Today: Proceedings, 2021, 49, 3414-3414.	0.9	0
15	Strong enhancement in structural, dielectric, impedance and magnetoelectric properties of NdMnO3 - BaTiO3 multiferroic composites. Materials Chemistry and Physics, 2021, 270, 124856.	2.0	13
16	Significant improvements in dielectric, impedance, multiferroic and magnetoelectric properties of (1Ââ°Âx)Co0.5Ni0.5Fe2O4â°xBaTiO3 bulk composites (x = 0, 0.10 and 0.20). Journal of Materials Scie Materials in Electronics, 2021, 32, 16706-16714.	nc e: 1	3
17	Synthesis and optimization of photoluminescence properties in potential reddish orange emitting niobate phosphor for photonic device applications. Luminescence, 2021, 36, 1444-1451.	1.5	5
18	Development of deep red–emitting CaBiVO ₅ :Pr ³⁺ phosphor for multifunctional optoelectronic applications. Journal of the American Ceramic Society, 2021, 104, 5764-5775.	1.9	14

#	Article	IF	CITATIONS
19	Photoluminescence and thermal sensing properties of Er3+ doped silicate based phosphors for multifunctional optoelectronic device applications. Ceramics International, 2021, 47, 27694-27701.	2.3	12
20	Spectroscopic and color tunable studies in Dy3+/Eu3+co-doped calcium-bismuth-vanadate phosphor for lighting applications. Solid State Sciences, 2021, 122, 106776.	1.5	10
21	Impedance Spectroscopy and Conduction Behavior in CoFe2O4-BaTiO3 Composites. Journal of Electronic Materials, 2020, 49, 472-484.	1.0	12
22	Luminescence properties of orange emitting CaAl4O7:Sm3+ phosphor for solid state lighting applications. Solid State Sciences, 2020, 101, 106049.	1.5	17
23	Progress in multiferroic and magnetoelectric materials: applications, opportunities and challenges. Journal of Materials Science: Materials in Electronics, 2020, 31, 19487-19510.	1.1	21
24	Structural and spectroscopic characteristics of thermally stable Eu3+ activated barium zinc orthophosphate phosphor for white LEDs. Ceramics International, 2020, 46, 26410-26415.	2.3	28
25	Conversion of blue emitting thermally stable Ca3Bi(PO4)3 host as a color tunable phosphor via energy transfer for luminescent devices. Journal of Luminescence, 2020, 227, 117570.	1.5	20
26	Dielectric and tunable ferroelectric properties in BiFeO3–BiCoO3–BaTiO3 ternary compound. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
27	Structural, multiferroic, and magnetoelectric properties of (1 â^' x)Bi0.85La0.15FeO3–xBaTiO3 composite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 12226-12237.	1.1	8
28	Optimization of structural and luminescent properties with intense red emitting thermally stable Sm3+ doped CaBiVO5 phosphors for w-LED applications. Optical Materials, 2020, 107, 110119.	1.7	21
29	Tb3+ ion induced colour tunability in calcium aluminozincate phosphor for lighting and display devices. Journal of Alloys and Compounds, 2020, 826, 154212.	2.8	37
30	Synthesis of orange emitting Sm3+ doped sodium calcium silicate phosphor by sol-gel method for photonic device applications. Ceramics International, 2020, 46, 26434-26439.	2.3	38
31	Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped Sodium Bismuth Strontium Phosphate glasses. Journal of Luminescence, 2019, 215, 116693.	1.5	64
32	Enhancement of luminescent properties in Eu3+ doped BaNb2O6 nanophosphor synthesized by facile metal citrate gel method. Optical Materials, 2019, 96, 109301.	1.7	6
33	Synthesis optimization, photoluminescence and thermoluminescence studies of Eu3+ doped calcium aluminozincate phosphor. Journal of Alloys and Compounds, 2019, 802, 129-138.	2.8	27
34	Conductivity behavior and impedance studies in BaTiO3–CoFe2O4 magnetoelectric composites. Materials Chemistry and Physics, 2019, 234, 110-121.	2.0	40
35	Color tunable photoluminescence properties in Eu3+ doped calcium bismuth vanadate phosphors for luminescent devices. Ceramics International, 2019, 45, 15385-15393.	2.3	37
36	White lightÂemitting thermally stable bismuth phosphate phosphor Ca ₃ Bi(PO ₄) ₃ :Dy ³⁺ for solidâ€state lighting applications. Journal of the American Ceramic Society, 2019, 102, 6087-6099.	1.9	65

#	Article	IF	CITATIONS
37	Color tunability and energy transfer studies of Dy3+/ Eu3+ co-doped calcium aluminozincate phosphor for lighting applications. Materials Research Bulletin, 2019, 116, 79-88.	2.7	40
38	Influence of modifier oxides on spectroscopic properties of Eu3+ doped oxy-fluoro tellurophosphate glasses for visible photonic applications. Journal of Alloys and Compounds, 2019, 789, 622-629.	2.8	18
39	Tunable luminescence properties of SrAl2O4: Eu3+ phosphors for LED applications. Journal of Molecular Structure, 2019, 1178, 394-400.	1.8	24
40	Anomalous ferroelectricity and strong magnetoelectric coupling in CoFe2O4-ferroelectric composites. Journal of Alloys and Compounds, 2019, 779, 918-925.	2.8	25
41	Tb3+ and Eu3+ doped zinc phosphate glasses for solid state lighting applications. AIP Conference Proceedings, 2018, , .	0.3	1
42	Spectroscopic studies of Dy3+ doped borate glasses for cool white light generation. Materials Research Bulletin, 2018, 104, 77-82.	2.7	67
43	Photoluminescence investigations on Sm3+ ions doped borate glasses for tricolor w-LEDs and lasers. Materials Research Bulletin, 2018, 100, 206-212.	2.7	73
44	Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications. Optical Materials, 2018, 78, 457-464.	1.7	21
45	Effective sensitization of Eu3+ and energy transfer in Sm3+/Eu3+ co-doped ZPBT glasses for CuPc based solar cell and w-LED applications. Journal of Luminescence, 2018, 194, 102-107.	1.5	38
46	UV radiation emitting Gd3+ activated Sr2SiO4 host system prepared by sol–gel procedure: structural, electron paramagnetic resonance, and luminescence studies. Journal of Materials Science: Materials in Electronics, 2018, 29, 20759-20767.	1.1	4
47	Energy storage and magnetoelectric coupling in ferroelectric–ferrite composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 18352-18357.	1.1	21
48	Enhanced red down-conversion luminescence and high color purity from flux assisted Eu3+ doped calcium aluminozincate phosphor. Journal of Luminescence, 2018, 202, 461-468.	1.5	28
49	UV emitting Pb2+ doped SrZrO3 phosphors prepared by sol-gel procedure. Ceramics International, 2018, 44, 17074-17078.	2.3	14
50	Synthesis and enhancement of photoluminescent properties in spherical shaped Sm3+/Eu3+ co-doped NaCaPO4 phosphor particles for w-LEDs. Journal of Luminescence, 2018, 202, 475-483.	1.5	43
51	Abnormal temperature dependent luminescence behavior of CaSrSiO4:Eu2+ phosphors synthesized via sol-gel strategy. Journal of Alloys and Compounds, 2017, 703, 80-85.	2.8	9
52	Optimization of synthesis technique and luminescent properties in Eu3+-activated NaCaPO4 phosphor for solid state lighting applications. Journal of Luminescence, 2017, 185, 99-105.	1.5	20
53	Spectroscopic studies of Pr3+ doped lithium lead alumino borate glasses for visible reddish orange luminescent device applications. Journal of Alloys and Compounds, 2017, 708, 911-921.	2.8	99
54	Structural and emission properties of Eu ³⁺ â€doped alkaline earth zincâ€phosphate glasses for white <scp>LED</scp> applications. Journal of the American Ceramic Society, 2017, 100, 1402-1411.	1.9	75

#	Article	IF	CITATIONS
55	Spectroscopic and photoluminescence characteristics of Sm3+ doped calcium aluminozincate phosphor for applications in w-LED. Ceramics International, 2017, 43, 7401-7407.	2.3	94
56	Multicolor and white light emitting Tb 3+ /Sm 3+ co-doped zinc phosphate barium titanate glasses via energy transfer for optoelectronic device applications. Journal of Alloys and Compounds, 2017, 719, 116-124.	2.8	53
57	Single NUV band pumped PbO-GeO 2 -TeO 2 :Tb 3+ yellowish green emitting glass material for tricolor white LEDs. Journal of Alloys and Compounds, 2017, 711, 395-399.	2.8	22
58	A novel red emitting Eu3+ doped calcium aluminozincate phosphor for applications in w-LEDs. Journal of Alloys and Compounds, 2017, 697, 367-373.	2.8	84
59	Enhancement in thermoelectric performance of SiGe nanoalloys dispersed with SiC nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 25180-25185.	1.3	36
60	Engendering color tunable emission in calcium silicate based phosphors via ageing of silicate source. Sensors and Actuators B: Chemical, 2017, 241, 1106-1110.	4.0	7
61	Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glasses for white light emitting diodes. Journal of Alloys and Compounds, 2016, 688, 833-840.	2.8	137
62	Pure orange color emitting Sm 3+ doped BaNb 2 O 6 phosphor for solid - state lighting applications. Journal of Luminescence, 2016, 176, 112-117.	1.5	76
63	Significant enhancement in photoluminescent properties via flux assisted Eu3+ doped BaNb2O6 phosphor for white LEDs. Journal of Alloys and Compounds, 2016, 683, 379-386.	2.8	31
64	Blue emitting YAl3(BO3)4:Tm3+ single-phase phosphors under UV excitation. Journal of Commonwealth Law and Legal Education, 2016, 57, 68-70.	0.2	4
65	Luminescence and advanced mass spectroscopic characterization of sodium zinc orthophosphate phosphor for lowâ€cost lightâ€emitting diodes. Luminescence, 2016, 31, 348-355.	1.5	4
66	White light emission and color tunability of dysprosium doped barium silicate glasses. Journal of Luminescence, 2016, 169, 121-127.	1.5	139
67	Visible, Up-conversion and NIR (~1.5μm) luminescence studies of Er3+ doped Zinc Alumino Bismuth Borate glasses. Journal of Luminescence, 2015, 163, 55-63.	1.5	55
68	The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys. Nanoscale, 2015, 7, 12474-12483.	2.8	83
69	Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features. Nano Energy, 2015, 13, 36-46.	8.2	158
70	Crystal structure and mechanical properties of spark plasma sintered Cu2Se: An efficient photovoltaic and thermoelectric material. Solid State Communications, 2015, 207, 21-25.	0.9	52
71	Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide. Journal of Physics and Chemistry of Solids, 2015, 81, 100-105.	1.9	48
72	Mechanical properties and microstructure of spark plasma sintered nanostructured p-type SiGe thermoelectric alloys. Materials and Design, 2015, 87, 414-420.	3.3	31

#	Article	IF	CITATIONS
73	Emerging cool white light emission from Dy ³⁺ doped single phase alkaline earth niobate phosphors for indoor lighting applications. Dalton Transactions, 2015, 44, 17166-17174.	1.6	156
74	Red light emitting BaNb2O6:Eu3+ phosphor for solid state lighting applications. Journal of Alloys and Compounds, 2015, 622, 97-101.	2.8	82
75	Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering. Applied Physics Letters, 2014, 105, .	1.5	41
76	Energy transfer and NIR emission in rare earth tri-doped barium lanthanum fluoro tellurite glasses. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2090-2093.	0.8	2
77	Tb 3+ doped Zinc Alumino Bismuth Borate glasses for green emitting luminescent devices. Journal of Luminescence, 2014, 156, 180-187.	1.5	50
78	Luminescent properties of orange emissive Sm3+-activated thermally stable phosphate phosphor for optical devices. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 563-567.	2.0	38
79	Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs. Journal of Alloys and Compounds, 2013, 564, 100-104.	2.8	96
80	Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices. Ceramics International, 2013, 39, 8459-8465.	2.3	71
81	Spectroscopic properties and luminescence behavior of Nd3+ doped zinc alumino bismuth borate glasses. Journal of Physics and Chemistry of Solids, 2013, 74, 1308-1315.	1.9	87
82	Optical absorption and luminescence characteristics of Dy3+ doped Zinc Alumino Bismuth Borate glasses for lasing materials and white LEDs. Journal of Luminescence, 2013, 139, 119-124.	1.5	107
83	Synthesis and characterization of novel K2La2â^'Eu Ti3O10 phosphor for blue chip white LEDs. Optics Communications, 2013, 294, 208-212.	1.0	6
84	Enhancement in Thermoelectric Figure-of-merit of n-type Si-Ge Alloy Synthesized Employing High Energy Ball Milling and Spark Plasma Sintering. Materials Research Society Symposia Proceedings, 2013, 1490, 51-56.	0.1	5
85	Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys. Applied Physics Letters, 2012, 101, .	1.5	133
86	Erbiumâ€Doped Fluoroborate Glasses for Near Infrared Broadband Amplifiers. International Journal of Applied Glass Science, 2011, 2, 215-221.	1.0	19
87	Combustion Synthesis and Luminescent Properties of Nano and Submicrometer-Size Gd2O3:Dy3+ Phosphors for White LEDs. International Journal of Applied Ceramic Technology, 2011, 8, 709-717.	1.1	28
88	Synthesis and luminescence properties of cinnamide based nanohybrid materials containing Eu (II) ions. Journal of Crystal Growth, 2011, 326, 128-134.	0.7	1
89	Investigation on luminescence properties of Nd3+ ions in alkaline-earth titanium phosphate glasses. Optics Communications, 2011, 284, 603-607.	1.0	37
90	Luminescent studies of Dy3+ ion in alkali lead tellurofluoroborate glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 78-84.	1.1	119

#	Article	IF	CITATIONS
91	Photoluminescence and structural properties of Ca3Y(VO4)3:RE3+ (=Sm3+, Ho3+ and Tm3+) powder phosphors for tri-colors. Journal of Crystal Growth, 2011, 326, 120-123.	0.7	76
92	Concentration dependent luminescence characteristics of ⁵ D 4 and ⁵ D 3 excited states of Tb ³⁺ ions in CFB glasses. Proceedings of SPIE, 2011, , .	0.8	6
93	Spectroscopic properties of Er3+ ions in (GeS2)80(Ga2S3)20 glasses. Materials Chemistry and Physics, 2010, 120, 490-492.	2.0	5
94	Optical absorption and emission characteristics of Pr3+-doped RTP glasses. Physica B: Condensed Matter, 2010, 405, 1095-1100.	1.3	33
95	Conversion of green emission into white light in Gd2O3 nanophosphors. Thin Solid Films, 2010, 518, 6210-6213.	0.8	19
96	Greenish‥ellow Emission from Dy ³⁺ â€Doped Y ₂ O ₃ Nanophosphors. Journal of the American Ceramic Society, 2010, 93, 494-499.	1.9	87
97	White Light Emission from NaCaPO ₄ :Dy ³⁺ Phosphor for Ultravioletâ€Based White Lightâ€Emitting Diodes. Journal of the American Ceramic Society, 2010, 93, 3857-3861.	1.9	146
98	Fluorescence Properties of Pr ³⁺ Doped Calcium Fluoroborate Glasses. Advanced Materials Research, 2010, 123-125, 1235-1238.	0.3	3
99	Host sensitized novel red phosphor CaZrSi ₂ O ₇ : Eu ³⁺ for near U` and blue LED-based white LEDs. Journal Physics D: Applied Physics, 2010, 43, 395103.	V 1.3	50
100	Up-conversion fluorescence and low-temperature emission in Er3+-doped GeGaS–CsBr glasses. Journal of Non-Crystalline Solids, 2010, 356, 2393-2396.	1.5	8
101	Photoluminescence properties of Er3+-doped alkaline earth titanium phosphate glasses. Journal of Alloys and Compounds, 2010, 491, 349-353.	2.8	24
102	SiO2effect on spectral and colorimetric properties of europium doped SrO2–MgO–xSiO2(0.8 ⩽x⩽ 1. phosphor for white LEDs. Journal Physics D: Applied Physics, 2009, 42, 105401.	6) 1.3	10
103	Sm3+luminescence in alkali lead tellurofluoroborate glasses. IOP Conference Series: Materials Science and Engineering, 2009, 2, 012049.	0.3	3
104	Optical absorption and near infrared emission properties of Nd3+ ions in alkali lead tellurofluoroborate glasses. Solid State Sciences, 2009, 11, 2093-2098.	1.5	18
105	The influence of CsBr addition on optical and thermal properties of GeGaS glasses doped with erbium. Journal of Materials Science: Materials in Electronics, 2009, 20, 421-424.	1.1	2
106	Photoluminescence and phosphorescence properties of phosphor for UV-based white-LEDs. Physica B: Condensed Matter, 2009, 404, 2016-2019.	1.3	22
107	Spectroscopic and optical properties of Nd3+ doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses. Physica B: Condensed Matter, 2009, 404, 3717-3721.	1.3	68
108	Optical absorption, fluorescence and decay properties of Pr3+-doped PbO–H3BO3–TiO2–AlF3 glasses. Journal of Luminescence, 2009, 129, 1023-1028.	1.5	52

#	Article	IF	CITATIONS
109	Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses. Optical Materials, 2009, 31, 1167-1172.	1.7	113
110	White light generation from Dy3+-doped ZnO–B2O3–P2O5 glasses. Journal of Applied Physics, 2009, 106, .	1.1	121
111	Excitation-Dependent Emissive Properties of Silicate Phosphor for Light Converted LEDs. Journal of the Korean Physical Society, 2009, 55, 1587-1590.	0.3	4
112	Luminescent Properties of Tb3+- Doped NaCaPO4 Phosphor. Journal of the Korean Physical Society, 2009, 55, 2383-2387.	0.3	13
113	Emission properties of Eu3+ ions in alkali tellurofluorophosphate glasses. Physica B: Condensed Matter, 2008, 403, 1690-1694.	1.3	59
114	Luminescence properties of triple phosphate Ca ₈ MgGd(PO ₄) ₇ : Eu ²⁺ for white light-emitting dio Journal Physics D: Applied Physics, 2008, 41, 095110.	d a s3	55
115	Luminescence and microstructure of Sm2+ ions reduced by x-ray irradiation in Li2O–SrO–B2O3 glass. Journal of Applied Physics, 2008, 103, 113519.	1.1	22
116	Spectroscopic properties and Judd–Ofelt analysis of Sm ³⁺ doped lead–germanate–tellurite glasses. Journal Physics D: Applied Physics, 2008, 41, 175101.	1.3	73
117	Optical Spectroscopy and Luminescence Properties of Sm3+-Doped Lead-Germanate Glasses. Journal of the Korean Physical Society, 2008, 52, 599-605.	0.3	5
118	Optical properties of Er3+-doped alkali fluorophosphate glasses. Journal of Non-Crystalline Solids, 2007, 353, 1392-1396.	1.5	23
119	An investigation of the optical properties of Nd3+ ions in alkali tellurofluorophosphate glasses. Optical Materials, 2007, 29, 1321-1326.	1.7	32
120	Optical properties of Dy3+ions in alkali tellurofluorophosphate glasses for laser materials. Journal Physics D: Applied Physics, 2006, 39, 635-641.	1.3	70
121	Radiative emission probabilities of Dy3+-doped alkali borate and fluoroborate glasses. Journal of Alloys and Compounds, 2006, 408-412, 724-727.	2.8	13
122	Spectroscopic characteristics of Sm3+-doped alkali fluorophosphate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 64, 939-944.	2.0	71
123	Lasing properties of Pr3+-doped tellurofluorophosphate glasses. Materials Chemistry and Physics, 2005, 93, 455-460.	2.0	39
124	Er3+-doped tellurofluorophosphate glasses for lasers and optical amplifiers. Journal of Physics Condensed Matter, 2005, 17, 7705-7715.	0.7	37
125	Modified Judd–Ofelt analysis of Pr3+ ions in mixed alkali chloroborophosphate glasses. Physica B: Condensed Matter, 2004, 352, 210-219.	1.3	9
126	Spectroscopic investigations of Nd3+-doped alkali chloroborophosphate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2449-2458.	2.0	36

#	Article	IF	CITATIONS
127	Luminescent and colorimetric properties of the sol–gel derived mono-phase Dy3+ doped silicate-based phosphor for w-LED applications. Journal of Sol-Gel Science and Technology, 0, , 1.	1.1	1
128	Optical analysis of Pr3+-doped Li6AlGd(BO3)4 phosphors for white LEDs. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	4