
AntÃ³nio Cunha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4051664/publications.pdf Version: 2024-02-01

ΔΝΤΑΊΩΝΙΟ ΟΠΝΗΛ

#	Article	IF	CITATIONS
1	Polyps Detection in Colonoscopies. Procedia Computer Science, 2022, 196, 477-484.	1.2	7
2	Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification. Journal of Imaging, 2022, 8, 19.	1.7	19
3	Exploring Dataset Manipulation via Machine Learning for Botnet Traffic. Procedia Computer Science, 2022, 196, 133-141.	1.2	6
4	Machine Learning automatic assessment for glaucoma and myopia based on Corvis ST data. Procedia Computer Science, 2022, 196, 454-460.	1.2	6
5	Abnormality classification in small datasets of capsule endoscopy images. Procedia Computer Science, 2022, 196, 469-476.	1.2	6
6	Lung Segmentation in CT Images: A Residual U-Net Approach on a Cross-Cohort Dataset. Applied Sciences (Switzerland), 2022, 12, 1959.	1.3	11
7	Evaluations of Deep Learning Approaches for Glaucoma Screening Using Retinal Images from Mobile Device. Sensors, 2022, 22, 1449.	2.1	10
8	Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. Journal of Personalized Medicine, 2022, 12, 480.	1.1	19
9	A Systematic Review of Artificial Intelligence Applications Used for Inherited Retinal Disease Management. Medicina (Lithuania), 2022, 58, 504.	0.8	6
10	Detection and Mosaicing Techniques for Low-Quality Retinal Videos. Sensors, 2022, 22, 2059.	2.1	0
11	A Comprehensive Review of Methods and Equipment for Aiding Automatic Glaucoma Tracking. Diagnostics, 2022, 12, 935.	1.3	4
12	Multiple instance learning for lung pathophysiological findings detection using CT scans. Medical and Biological Engineering and Computing, 2022, 60, 1569-1584.	1.6	4
13	Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice. Diagnostics, 2022, 12, 1278.	1.3	10
14	Retinal Glaucoma Public Datasets: What Do We Have and What Is Missing?. Journal of Clinical Medicine, 2022, 11, 3850.	1.0	4
15	<i>EGFR</i> Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning. IEEE Access, 2021, 9, 58667-58676.	2.6	24
16	The Role of Liquid Biopsy in Early Diagnosis of Lung Cancer. Frontiers in Oncology, 2021, 11, 634316.	1.3	50
17	Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer. Applied Sciences (Switzerland), 2021, 11, 3273.	1.3	21
18	LNDb challenge on automatic lung cancer patient management. Medical Image Analysis, 2021, 70, 102027.	7.0	8

ΑντÃ³νιο Cunha

#	Article	IF	CITATIONS
19	Sharing Biomedical Data: Strengthening Al Development in Healthcare. Healthcare (Switzerland), 2021, 9, 827.	1.0	8
20	A multi-task CNN approach for lung nodule malignancy classification and characterization. Expert Systems With Applications, 2021, 184, 115469.	4.4	19
21	Comprehensive Perspective for Lung Cancer Characterisation Based on Al Solutions Using CT Images. Journal of Clinical Medicine, 2021, 10, 118.	1.0	14
22	Ensemble Strategies for EGFR Mutation Status Prediction in Lung Cancer. , 2021, 2021, 3285-3288.		2
23	Stacking Approach for Lung Cancer EGFR Mutation Status Prediction from CT Scans. , 2021, , .		0
24	THE ROLE OF RADIOGENOMICS IN EGFR AND KRAS MUTATION STATUS PREDICTION AMONG NON-SMALL CELL LUNG CANCER PATIENTS. Chest, 2020, 157, A16.	0.4	0
25	Pre-Training Autoencoder for Lung Nodule Malignancy Assessment Using CT Images. Applied Sciences (Switzerland), 2020, 10, 7837.	1.3	10
26	Conventional Filtering Versus U-Net Based Models for Pulmonary Nodule Segmentation in CT Images. Journal of Medical Systems, 2020, 44, 81.	2.2	25
27	Automatic Lung Nodule Detection Combined With Gaze Information Improves Radiologists' Screening Performance. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2894-2901.	3.9	15
28	Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS. Scientific Reports, 2020, 10, 3625.	1.6	41
29	Classification of Lung Nodules in CT Volumes Using the Lung-RADSâ"¢ Guidelines with Uncertainty Parameterization. , 2020, , .		1
30	Automatic Lung Reference Model. IFMBE Proceedings, 2020, , 999-1008.	0.2	0
31	LNDetector: A Flexible Gaze Characterisation Collaborative Platform for Pulmonary Nodule Screening. IFMBE Proceedings, 2020, , 333-343.	0.2	0
32	Segmentation of Pulmonary Nodules in CT Images Using the Sliding Band Filter. IFMBE Proceedings, 2020, , 353-357.	0.2	0
33	Low-Resolution Retinal Image Vessel Segmentation. Lecture Notes in Computer Science, 2020, , 611-627.	1.0	0
34	iW-Net: an automatic and minimalistic interactive lung nodule segmentation deep network. Scientific Reports, 2019, 9, 11591.	1.6	52
35	Small Bowel Mucosa Segmentation for Frame Characterization in Videos of Endoscopic Capsules. , 2019, , .		1

Wide Residual Network for Lung-Radsâ,,¢ Screening Referral. , 2019, , .

2

AntÃ³nio Cunha

#	Article	IF	CITATIONS
37	Convolutional Neural Network Architectures for Texture Classification of Pulmonary Nodules. Lecture Notes in Computer Science, 2019, , 783-791.	1.0	4
38	Characterization of Water and Energy Consumptions at the End Use Level in Rural and Urban Environments: Preliminary Results of the ENERWAT Project. Urban Science, 2019, 3, 8.	1.1	1
39	An unsupervised metaheuristic search approach for segmentation and volume measurement of pulmonary nodules in lung CT scans. Expert Systems With Applications, 2019, 119, 415-428.	4.4	26
40	Comparison of Conventional and Deep Learning Based Methods for Pulmonary Nodule Segmentation in CT Images. Lecture Notes in Computer Science, 2019, , 361-371.	1.0	4
41	Radiogenomics: Lung Cancer-Related Genes Mutation Status Prediction. Lecture Notes in Computer Science, 2019, , 335-345.	1.0	2
42	Unsupervised Neural Network for Homography Estimation in Capsule Endoscopy Frames. Procedia Computer Science, 2019, 164, 602-609.	1.2	9
43	Lesions Multiclass Classification in Endoscopic Capsule Frames. Procedia Computer Science, 2019, 164, 637-645.	1.2	4
44	Learning Lung Nodule Malignancy Likelihood from Radiologist Annotations or Diagnosis Data. Journal of Medical and Biological Engineering, 2018, 38, 424-442.	1.0	19
45	Deep Homography Based Localization on Videos of Endoscopic Capsules. , 2018, , .		3
46	Radiologists' Gaze Characterization During Lung Nodule Search in Thoracic CT. , 2018, , .		3
47	Towards an Automatic Lung Cancer Screening System in Low Dose Computed Tomography. Lecture Notes in Computer Science, 2018, , 310-318.	1.0	8
48	Machine learning classification methods in hyperspectral data processing for agricultural applications. , 2018, , .		6
49	A Deep Learning Approach for Red Lesions Detection in Video Capsule Endoscopies. Lecture Notes in Computer Science, 2018, , 553-561.	1.0	27
50	A pilot digital image processing approach for detecting vineyard parcels in Douro region through high-resolution aerial imagery. , 2018, , .		1
51	Detection of juxta-pleural lung nodules in computed tomography images. Proceedings of SPIE, 2017, , .	0.8	9
52	From water to energy: low cost water & energy consumptions readings. Procedia Computer Science, 2017, 121, 960-967.	1.2	4
53	Evaluation of the Degree of Malignancy of Lung Nodules in Computed Tomography Images. , 2017, , .		2
54	Automatic Meal Intake Monitoring Using Hidden Markov Models. Procedia Computer Science, 2016, 100, 110-117.	1.2	5

António Cunha

#	Article	IF	CITATIONS
55	Helping Older People: Is there an App for that?. Procedia Computer Science, 2016, 100, 118-127.	1.2	10
56	Mobile RHS: A Mobile Application to Support the "River Habitat Survey―Methodology. Procedia Computer Science, 2015, 64, 87-94.	1.2	3
57	HelpWave: An Integrated Web Centred System. Procedia Computer Science, 2015, 64, 110-117.	1.2	1
58	Cost-effective and Lightweight Mobile Units for MixAR: A Comparative Trial among Different Setups. Procedia Computer Science, 2015, 64, 870-878.	1.2	7
59	Usability test of 3Dconnexion 3D mice versus keyboardÂ+Âmouse in Second Life undertaken by people with motor disabilities due to medullary lesions. Universal Access in the Information Society, 2015, 14, 5-16.	2.1	4
60	Towards Modern Cost-effective and Lightweight Augmented Reality Setups. International Journal of Web Portals, 2015, 7, 33-59.	1.1	5
61	HelpmePills: A Mobile Pill Recognition Tool for Elderly Persons. Procedia Technology, 2014, 16, 1523-1532.	1.1	26
62	Evaluation of MS Kinect for Elderly Meal Intake Monitoring. Procedia Technology, 2014, 16, 1383-1390.	1.1	17
63	Reassuring the Elderly Regarding the Use of Mobile Devices for Mobility. Lecture Notes in Computer Science, 2014, , 46-57.	1.0	2
64	Usability Test of 3Dconnexion 3D Mice Versus Keyboard+Mouse in Second Life Undertaken by People with Motor Disabilities due to Medullary Lesions. Procedia Computer Science, 2012, 14, 119-127.	1.2	6
65	Endoscopy — Brief historical survey, developments and therapeutics. , 2011, , .		1
66	Planning of a usability test for 3D controllers in Second Life / OpenSimulator virtual worlds. , 2011, , .		2
67	Outsourcing of Information Systems Services in Banking in Portugal. , 0, , .		1
68	Success factors of CRM project management $\hat{a} \in \hat{A}$ Literature Review. , 0, , .		0
69	Towards Modern Cost-Effective and Lightweight Augmented Reality Setups. , 0, , 396-423.		Ο