Jennifer Mahony

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405149/publications.pdf Version: 2024-02-01

IENNIEED MAHONY

#	Article	IF	CITATIONS
1	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	1,118
2	T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature, 2014, 509, 361-365.	27.8	731
3	Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends in Food Science and Technology, 2013, 33, 93-109.	15.1	243
4	Bacteriophage Orphan DNA Methyltransferases: Insights from Their Bacterial Origin, Function, and Occurrence. Applied and Environmental Microbiology, 2013, 79, 7547-7555.	3.1	190
5	Glycan Utilization and Cross-Feeding Activities by Bifidobacteria. Trends in Microbiology, 2018, 26, 339-350.	7.7	182
6	Bacteriophages as biocontrol agents of food pathogens. Current Opinion in Biotechnology, 2011, 22, 157-163.	6.6	169
7	Structure of the phage TP901-1 1.8ÂMDa baseplate suggests an alternative host adhesion mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8954-8958.	7.1	121
8	Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genomics, 2017, 18, 267.	2.8	117
9	Investigation of the Relationship between Lactococcal Host Cell Wall Polysaccharide Genotype and 936 Phage Receptor Binding Protein Phylogeny. Applied and Environmental Microbiology, 2013, 79, 4385-4392.	3.1	99
10	Differences in Lactococcal Cell Wall Polysaccharide Structure Are Major Determining Factors in Bacteriophage Sensitivity. MBio, 2014, 5, e00880-14.	4.1	98
11	Metagenomic Approaches to Assess Bacteriophages in Various Environmental Niches. Viruses, 2017, 9, 127.	3.3	98
12	Identification and Characterization of Lactococcal-Prophage-Carried Superinfection Exclusion Genes. Applied and Environmental Microbiology, 2008, 74, 6206-6215.	3.1	95
13	The Lactococcal Phages Tuc2009 and TP901-1 Incorporate Two Alternate Forms of Their Tail Fiber into Their Virions for Infection Specialization*. Journal of Biological Chemistry, 2013, 288, 5581-5590.	3.4	79
14	In Vitro Characteristics of Phages to Guide â€~Real Life' Phage Therapy Suitability. Viruses, 2018, 10, 163.	3.3	76
15	Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Scientific Reports, 2016, 6, 36667.	3.3	75
16	Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Scientific Reports, 2016, 6, 21345.	3.3	64
17	Plantaricyclin A, a Novel Circular Bacteriocin Produced by Lactobacillus plantarum NI326: Purification, Characterization, and Heterologous Production. Applied and Environmental Microbiology, 2018, 84, .	3.1	64
18	Sequence and comparative genomic analysis of lactococcal bacteriophages jj50, 712 and P008: evolutionary insights into the 936 phage species. FEMS Microbiology Letters, 2006, 261, 253-261.	1.8	63

#	Article	IF	CITATIONS
19	Current taxonomy of phages infecting lactic acid bacteria. Frontiers in Microbiology, 2014, 5, 7.	3.5	63
20	Broad-spectrum antifungal-producing lactic acid bacteria and their application in fruit models. Folia Microbiologica, 2013, 58, 291-299.	2.3	60
21	Lactococcal 936-type phages and dairy fermentation problems: from detection to evolution and prevention. Frontiers in Microbiology, 2012, 3, 335.	3.5	58
22	The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. MBio, 2016, 7, e01781-15.	4.1	58
23	The <i>Lactococcus lactis</i> plasmidome: much learnt, yet still lots to discover. FEMS Microbiology Reviews, 2014, 38, 1066-1088.	8.6	56
24	Tracing mother-infant transmission of bacteriophages by means of a novel analytical tool for shotgun metagenomic datasets: METAnnotatorX. Microbiome, 2018, 6, 145.	11.1	54
25	Identification and Analysis of a Novel Group of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Applied and Environmental Microbiology, 2016, 82, 5153-5165.	3.1	53
26	Comparative analysis of two antifungal <i>Lactobacillus plantarum</i> isolates and their application as bioprotectants in refrigerated foods. Journal of Applied Microbiology, 2012, 113, 1417-1427.	3.1	50
27	Identification of a New P335 Subgroup through Molecular Analysis of Lactococcal Phages Q33 and BM13. Applied and Environmental Microbiology, 2013, 79, 4401-4409.	3.1	48
28	Structure and Functional Analysis of the Host Recognition Device of Lactococcal Phage Tuc2009. Journal of Virology, 2013, 87, 8429-8440.	3.4	46
29	Viral infection modulation and neutralization by camelid nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1371-9.	7.1	45
30	Comparative genome analysis of the Lactobacillus brevis species. BMC Genomics, 2019, 20, 416.	2.8	45
31	Isolation of a Virulent Lactobacillus brevis Phage and Its Application in the Control of Beer Spoilage. Journal of Food Protection, 2011, 74, 2157-2161.	1.7	44
32	Biodiversity of lactococcal bacteriophages isolated from 3 Gouda-type cheese-producing plants. Journal of Dairy Science, 2013, 96, 4945-4957.	3.4	42
33	Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses. Applied and Environmental Microbiology, 2013, 79, 4786-4798.	3.1	42
34	Another Brick in the Wall: a Rhamnan Polysaccharide Trapped inside Peptidoglycan of <i>Lactococcus lactis</i> . MBio, 2017, 8, .	4.1	42
35	Analysis of Selection Methods to Develop Novel Phage Therapy Cocktails Against Antimicrobial Resistant Clinical Isolates of Bacteria. Frontiers in Microbiology, 2021, 12, 613529.	3.5	42
36	Complete Genome Sequence of Lactobacillus plantarum Strain 16, a Broad-Spectrum Antifungal-Producing Lactic Acid Bacterium. Genome Announcements, 2013, 1, .	0.8	41

#	Article	IF	CITATIONS
37	Phage-Host Interactions of Cheese-Making Lactic Acid Bacteria. Annual Review of Food Science and Technology, 2016, 7, 267-285.	9.9	41
38	Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiology, 2017, 67, 17-22.	4.2	41
39	Complete Genome of Lactococcus lactis subsp. cremoris UC509.9, Host for a Model Lactococcal P335 Bacteriophage. Genome Announcements, 2013, 1, .	0.8	39
40	Next-generation sequencing as an approach to dairy starter selection. Dairy Science and Technology, 2015, 95, 545-568.	2.2	38
41	<i>Klebsiella pneumoniae</i> subsp. <i>pneumoniae</i> –bacteriophage combination from the caecal effluent of a healthy woman. PeerJ, 2015, 3, e1061.	2.0	38
42	Progress in lactic acid bacterial phage research. Microbial Cell Factories, 2014, 13, S1.	4.0	35
43	Lactococcal 949 Group Phages Recognize a Carbohydrate Receptor on the Host Cell Surface. Applied and Environmental Microbiology, 2015, 81, 3299-3305.	3.1	35
44	Novel strategies to prevent or exploit phages in fermentations, insights from phage–host interactions. Current Opinion in Biotechnology, 2015, 32, 8-13.	6.6	35
45	Host recognition by lactic acid bacterial phages. FEMS Microbiology Reviews, 2017, 41, S16-S26.	8.6	35
46	A Decade of Streptococcus thermophilus Phage Evolution in an Irish Dairy Plant. Applied and Environmental Microbiology, 2018, 84, .	3.1	35
47	Conserved and Diverse Traits of Adhesion Devices from Siphoviridae Recognizing Proteinaceous or Saccharidic Receptors. Viruses, 2020, 12, 512.	3.3	34
48	Structural Aspects of the Interaction of Dairy Phages with Their Host Bacteria. Viruses, 2012, 4, 1410-1424.	3.3	33
49	Phages of lactic acid bacteria: The role of genetics in understanding phage-host interactions and their co-evolutionary processes. Virology, 2012, 434, 143-150.	2.4	32
50	Functional carbohydrate binding modules identified in evolved dits from siphophages infecting various Gramâ€positive bacteria. Molecular Microbiology, 2018, 110, 777-795.	2.5	32
51	Novel Phage Group Infecting Lactobacillus delbrueckii subsp. lactis, as Revealed by Genomic and Proteomic Analysis of Bacteriophage Ldl1. Applied and Environmental Microbiology, 2015, 81, 1319-1326.	3.1	31
52	Biodiversity of bacteriophages infecting Lactococcus lactis starter cultures. Journal of Dairy Science, 2018, 101, 96-105.	3.4	31
53	Genetic and functional characterisation of the lactococcal P335 phage-host interactions. BMC Genomics, 2017, 18, 146.	2.8	29
54	Biodiversity of Streptococcus thermophilus Phages in Global Dairy Fermentations. Viruses, 2018, 10, 577.	3.3	29

Jennifer Mahony

#	Article	IF	CITATIONS
55	Impact of thermal and biocidal treatments on lactococcal 936-type phages. International Dairy Journal, 2014, 34, 56-61.	3.0	27
56	Global Survey and Genome Exploration of Bacteriophages Infecting the Lactic Acid Bacterium Streptococcus thermophilus. Frontiers in Microbiology, 2017, 8, 1754.	3.5	27
57	Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity. BMC Genomics, 2014, 15, 831.	2.8	26
58	Assessing the functionality and genetic diversity of lactococcal prophages. International Journal of Food Microbiology, 2018, 272, 29-40.	4.7	26
59	Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Scientific Reports, 2018, 8, 12772.	3.3	26
60	Detecting Lactococcus lactis Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry Analysis. Frontiers in Microbiology, 2017, 8, 1343.	3.5	25
61	A dual-chain assembly pathway generates the high structural diversity of cell-wall polysaccharides in Lactococcus lactis. Journal of Biological Chemistry, 2019, 294, 17612-17625.	3.4	25
62	Cloning, expression and characterization of a β-d-xylosidase from Lactobacillus rossiae DSM 15814T. Microbial Cell Factories, 2016, 15, 72.	4.0	24
63	Sourdough authentication: quantitative PCR to detect the lactic acid bacterial microbiota in breads. Scientific Reports, 2017, 7, 624.	3.3	24
64	Molecular Characterization of Three Lactobacillus delbrueckii subsp. bulgaricus Phages. Applied and Environmental Microbiology, 2014, 80, 5623-5635.	3.1	23
65	Metagenomic Analysis of Dairy Bacteriophages: Extraction Method and Pilot Study on Whey Samples Derived from Using Undefined and Defined Mesophilic Starter Cultures. Applied and Environmental Microbiology, 2017, 83, .	3.1	23
66	Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and Targets of Commonly Used Sanitizers. Frontiers in Microbiology, 2017, 8, 107.	3.5	23
67	Lactic Acid Bacteria Diversity and Characterization of Probiotic Candidates in Fermented Meats. Foods, 2021, 10, 1519.	4.3	23
68	Discovery of a Conjugative Megaplasmid in Bifidobacterium breve. Applied and Environmental Microbiology, 2015, 81, 166-176.	3.1	22
69	Isolation and Characterization of Lactobacillus brevis Phages. Viruses, 2019, 11, 393.	3.3	22
70	The Lactococcus lactis Pan-Plasmidome. Frontiers in Microbiology, 2019, 10, 707.	3.5	22
71	A cell wallâ€associated polysaccharide is required for bacteriophage adsorption to the <i>Streptococcus thermophilus</i> cell surface. Molecular Microbiology, 2020, 114, 31-45.	2.5	22
72	Investigating the requirement for calcium during lactococcal phage infection. International Journal of Food Microbiology, 2015, 201, 47-51.	4.7	21

5

#	Article	IF	CITATIONS
73	Phage Biodiversity in Artisanal Cheese Wheys Reflects the Complexity of the Fermentation Process. Viruses, 2017, 9, 45.	3.3	21
74	Determination of the cell wall polysaccharide and teichoic acid structures from Lactococcus lactis IL1403. Carbohydrate Research, 2018, 462, 39-44.	2.3	21
75	Revisiting the host adhesion determinants of <i>Streptococcus thermophilus</i> siphophages. Microbial Biotechnology, 2020, 13, 1765-1779.	4.2	20
76	Ubiquitous Carbohydrate Binding Modules Decorate 936 Lactococcal Siphophage Virions. Viruses, 2019, 11, 631.	3.3	19
77	The CWPS Rubik's cube: Linking diversity of cell wall polysaccharide structures with the encoded biosynthetic machinery of selected <i>Lactococcus lactis</i> strains. Molecular Microbiology, 2020, 114, 582-596.	2.5	19
78	Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis. PLoS ONE, 2015, 10, e0131676.	2.5	19
79	The Plasmid Complement of Lactococcus lactis UC509.9 Encodes Multiple Bacteriophage Resistance Systems. Applied and Environmental Microbiology, 2014, 80, 4341-4349.	3.1	18
80	Generation of Bacteriophage-Insensitive Mutants of Streptococcus thermophilus via an Antisense RNA CRISPR-Cas Silencing Approach. Applied and Environmental Microbiology, 2018, 84, .	3.1	18
81	Construction of two Lactococcus lactis expression vectors combining the Gateway and the NIsin Controlled Expression systems. Plasmid, 2011, 66, 129-135.	1.4	17
82	Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9. Carbohydrate Research, 2018, 461, 25-31.	2.3	16
83	<i>Lactococcus lactis</i> phage TP901–1 as a model for <i>Siphoviridae</i> virion assembly. Bacteriophage, 2016, 6, e1123795.	1.9	15
84	Impact of gut-associated bifidobacteria and their phages on health: two sides of the same coin?. Applied Microbiology and Biotechnology, 2018, 102, 2091-2099.	3.6	14
85	Transcriptomic and morphological profiling of Aspergillus fumigatus Af293 in response to antifungal activity produced by Lactobacillus plantarum 16. Microbiology (United Kingdom), 2013, 159, 2014-2024.	1.8	13
86	Lysogenization of a Lactococcal Host with Three Distinct Temperate Phages Provides Homologous and Heterologous Phage Resistance. Microorganisms, 2020, 8, 1685.	3.6	13
87	Three distinct glycosylation pathways are involved in the decoration of Lactococcus lactis cell wall glycopolymers. Journal of Biological Chemistry, 2020, 295, 5519-5532.	3.4	13
88	Gram-positive phage-host interactions. Frontiers in Microbiology, 2015, 6, 61.	3.5	12
89	Identification of Dual Receptor Binding Protein Systems in Lactococcal 936 Group Phages. Viruses, 2018, 10, 668.	3.3	12
90	A Plasmid-Encoded Putative Glycosyltransferase Is Involved in Hop Tolerance and Beer Spoilage in Lactobacillus brevis. Applied and Environmental Microbiology, 2020, 86, .	3.1	12

6

#	Article	IF	CITATIONS
91	The Baseplate of Lactobacillus delbrueckii Bacteriophage Ld17 Harbors a Glycerophosphodiesterase. Journal of Biological Chemistry, 2016, 291, 16816-16827.	3.4	11
92	Genome Sequence of Serratia marcescens Phage BF. Genome Announcements, 2017, 5, .	0.8	11
93	Virome studies of food production systems: time for â€~farm to fork' analyses. Current Opinion in Biotechnology, 2022, 73, 22-27.	6.6	11
94	Identification of DNA Base Modifications by Means of Pacific Biosciences RS Sequencing Technology. Methods in Molecular Biology, 2018, 1681, 127-137.	0.9	10
95	Beer spoilage and low pH tolerance is linked to manganese homeostasis in selected <i>Lactobacillus brevis</i> strains. Journal of Applied Microbiology, 2020, 129, 1309-1320.	3.1	10
96	Biodiversity and Classification of Phages Infecting Lactobacillus brevis. Frontiers in Microbiology, 2019, 10, 2396.	3.5	9
97	A Quest of Great Importance-Developing a Broad Spectrum Escherichia coli Phage Collection. Viruses, 2019, 11, 899.	3.3	9
98	Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors. Computational and Structural Biotechnology Journal, 2021, 19, 4018-4031.	4.1	9
99	Genetic Dissection of a Prevalent Plasmid-Encoded Conjugation System in Lactococcus lactis. Frontiers in Microbiology, 2021, 12, 680920.	3.5	8
100	Simultaneous Production of Multiple Antimicrobial Compounds by Bacillus velezensis ML122-2 Isolated From Assam Tea Leaf [Camellia sinensis var. assamica (J.W.Mast.) Kitam.]. Frontiers in Microbiology, 2021, 12, 789362.	3.5	8
101	Brussowvirus SW13 Requires a Cell Surface-Associated Polysaccharide To Recognize Its Streptococcus thermophilus Host. Applied and Environmental Microbiology, 2022, 88, AEM0172321.	3.1	8
102	Biodiversity of Phages Infecting the Dairy Bacterium Streptococcus thermophilus. Microorganisms, 2021, 9, 1822.	3.6	7
103	Natural Transformation in Gram-Positive Bacteria and Its Biotechnological Relevance to Lactic Acid Bacteria. Annual Review of Food Science and Technology, 2022, 13, 409-431.	9.9	6
104	Bacteriophages Infecting Lactic Acid Bacteria. , 2017, , 249-272.		5
105	Novel Siphoviridae phage PMBT4 belonging to the group b Lactobacillus delbrueckii subsp. bulgaricus phages. Virus Research, 2022, 308, 198635.	2.2	5
106	Needle in a Whey-Stack: PhRACS as a Discovery Tool for Unknown Phage-Host Combinations. MBio, 2022, 13, e0333421.	4.1	5
107	Diversity of Human-Associated Bifidobacterial Prophage Sequences. Microorganisms, 2021, 9, 2559.	3.6	5
108	Complete Genome Sequence of Lactococcus lactis subsp. cremoris 3107, Host for the Model Lactococcal P335 Bacteriophage TP901-1. Microbiology Resource Announcements, 2019, 8, .	0.6	4

Jennifer Mahony

#	Article	IF	CITATIONS
109	The Impact and Applications of Phages in the Food Industry and Agriculture. Viruses, 2020, 12, 210.	3.3	4
110	In Vitro and In Vivo Assessment of the Potential of Escherichia coli Phages to Treat Infections and Survive Gastric Conditions. Microorganisms, 2021, 9, 1869.	3.6	4
111	Genome Sequences of Eight Prophages Isolated from Lactococcus lactis Dairy Strains. Genome Announcements, 2016, 4, .	0.8	3
112	Cell Surface Polysaccharides Represent a Common Strategy for Adsorption among Phages Infecting Lactic Acid Bacteria: Lessons from Dairy Lactococci and Streptococci. MSystems, 2021, 6, e0064121.	3.8	2
113	Dairy streptococcal cell wall and exopolysaccharide genome diversity. Microbial Genomics, 2022, 8, .	2.0	2
114	Complete Genome Sequence of the 936-Type Lactococcal Bacteriophage Caseus JM1. Genome Announcements, 2013, 1, e0005913.	0.8	1
115	Tale of the unseen phage. Bacteriophage, 2013, 3, e25985.	1.9	1
116	Starter Cultures. , 2019, , 787-813.		1
117	Viral Genomics and Evolution: The Fascinating Story of Dairy Phages. , 2021, , 171-187.		1
118	Special Issue "Bifidobacteria: Insights from Ecology to Genomics of a Key Microbial Group of the Mammalian Gut Microbiota― Microorganisms, 2020, 8, 1660.	3.6	0
119	Phageome Analysis of Bifidobacteria-Rich Samples. Methods in Molecular Biology, 2021, 2278, 71-85.	0.9	0