Jingzi Beiyuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/405140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	9.4	245
2	Mobility and phytoavailability of As and Pb in a contaminated soil using pine sawdust biochar under systematic change of redox conditions. Chemosphere, 2017, 178, 110-118.	4.2	231
3	A combination of ferric nitrate/EDDS-enhanced washing and sludge-derived biochar stabilization of metal-contaminated soils. Science of the Total Environment, 2018, 616-617, 572-582.	3.9	146
4	Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. Journal of Hazardous Materials, 2021, 401, 123311.	6.5	142
5	Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification. Chemosphere, 2017, 182, 31-39.	4.2	117
6	Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environment International, 2021, 146, 106207.	4.8	105
7	Legacy of multiple heavy metal(loid)s contamination and ecological risks in farmland soils from a historical artisanal zinc smelting area. Science of the Total Environment, 2020, 720, 137541.	3.9	104
8	Fate of arsenic before and after chemical-enhanced washing of an arsenic-containing soil in Hong Kong. Science of the Total Environment, 2017, 599-600, 679-688.	3.9	96
9	Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment. Chemosphere, 2017, 166, 489-496.	4.2	94
10	Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environment International, 2019, 127, 276-290.	4.8	92
11	Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environmental Pollution, 2018, 232, 375-384.	3.7	83
12	Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil. Environmental Pollution, 2021, 277, 116758.	3.7	78
13	Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes. Science of the Total Environment, 2018, 625, 147-154.	3.9	75
14	Novel ternary BiOI/g-C3N4/CeO2 catalysts for enhanced photocatalytic degradation of tetracycline under visible-light radiation via double charge transfer process. Journal of Alloys and Compounds, 2019, 809, 151804.	2.8	75
15	Emergent thallium exposure from uranium mill tailings. Journal of Hazardous Materials, 2021, 407, 124402.	6.5	71
16	Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation. Chemical Engineering Journal, 2022, 433, 134387.	6.6	71
17	Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site. Chemosphere, 2016, 159, 426-432.	4.2	65
18	(Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environment International, 2020, 135, 105376.	4.8	63

Jingzi Beiyuan

#	Article	IF	CITATIONS
19	Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago) Tj ETQq1	1 0.784314 rg 4.2	gBT ₆ 3Overloci
20	Combined application of EDDS and EDTA for removal of potentially toxic elements under multiple soil washing schemes. Chemosphere, 2018, 205, 178-187.	4.2	62
21	Chelant-enhanced washing of CCA-contaminated soil: Coupled with selective dissolution or soil stabilization. Science of the Total Environment, 2018, 612, 1463-1472.	3.9	60
22	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	4.8	60
23	Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. Science of the Total Environment, 2020, 739, 139957.	3.9	58
24	Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests. Science of the Total Environment, 2018, 631-632, 1486-1494.	3.9	51
25	Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis. Science of the Total Environment, 2022, 816, 151556.	3.9	51
26	New insights into ball milling effects on MgAl-LDHs exfoliation on biochar support: A case study for cadmium adsorption. Journal of Hazardous Materials, 2021, 416, 126258.	6.5	46
27	Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments. Journal of Hazardous Materials, 2021, 411, 125015.	6.5	45
28	Particulate plastics-plant interaction in soil and its implications: A review. Science of the Total Environment, 2021, 792, 148337.	3.9	44
29	Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environmental Pollution, 2022, 300, 118978.	3.7	39
30	Interactions of food waste compost with metals and metal-chelant complexes during soil remediation. Journal of Cleaner Production, 2018, 192, 199-206.	4.6	29
31	Survival strategies and dominant phylotypes of maize-rhizosphere microorganisms under metal(loid)s contamination. Science of the Total Environment, 2021, 774, 145143.	3.9	29
32	Escalating health risk of thallium and arsenic from farmland contamination fueled by cement-making activities: A hidden but significant source. Science of the Total Environment, 2021, 782, 146603.	3.9	28
33	Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification. Environmental Science and Pollution Research, 2017, 24, 27822-27832.	2.7	26
34	Risk mitigation by waste-based permeable reactive barriers for groundwater pollution control at e-waste recycling sites. Environmental Geochemistry and Health, 2017, 39, 75-88.	1.8	24
35	Sorption, mobility, and bioavailability of PBDEs in the agricultural soils: Roles of co-existing metals, dissolved organic matter, and fertilizers. Science of the Total Environment, 2018, 619-620, 1153-1162.	3.9	23
36	Interactions between methanotrophs and ammonia oxidizers modulate the response of in situ methane emissions to simulated climate change and its legacy in an acidic soil. Science of the Total Environment, 2021, 752, 142225.	3.9	22

Jingzi Beiyuan

#	Article	IF	CITATIONS
37	Uptake, organ distribution and health risk assessment of potentially toxic elements in crops in abandoned indigenous smelting region. Chemosphere, 2022, 292, 133321.	4.2	22
38	Heavy metal pollution increases soil microbial carbon limitation: Evidence from ecological enzyme stoichiometry. Soil Ecology Letters, 2021, 3, 230-241.	2.4	21
39	Nitrogen of EDDS enhanced removal of potentially toxic elements and attenuated their oxidative stress in a phytoextraction process. Environmental Pollution, 2021, 268, 115719.	3.7	19
40	Facile modification of graphene oxide and its application for the aqueous uranyl ion sequestration: Insights on the mechanism. Chemosphere, 2020, 258, 127152.	4.2	18
41	Thallium and potentially toxic elements distribution in pine needles, tree rings and soils around a pyrite mine and indication for environmental pollution. Science of the Total Environment, 2022, 828, 154346.	3.9	16
42	A critical review of uranium in the soil-plant system: Distribution, bioavailability, toxicity, and bioremediation strategies. Critical Reviews in Environmental Science and Technology, 2023, 53, 340-365.	6.6	16
43	Enhancement of UV-assisted TiO2 degradation of ibuprofen using Fenton hybrid process at circumneutral pH. Chinese Journal of Catalysis, 2018, 39, 701-709.	6.9	14
44	Optimizing extraction procedures for better removal of potentially toxic elements during EDTA-assisted soil washing. Journal of Soils and Sediments, 2020, 20, 3417-3426.	1.5	12
45	Effects of thallium exposure on intestinal microbial community and organ functions in zebrafish (Danio rerio). Elementa, 2021, 9, .	1.1	10
46	U(VI) adsorption by green and facilely modified Ficus microcarpa aerial roots: Behavior and mechanism investigation. Science of the Total Environment, 2022, 810, 151166.	3.9	10
47	Preface—Biochar and agricultural sustainability. Journal of Soils and Sediments, 2020, 20, 3015-3016.	1.5	4
48	Perspective on FeO-PS synergetic effect and reaction mechanism in the thallium(I) contaminated water treatment. Environmental Research, 2022, 214, 113698.	3.7	4
49	Effects of modified biochar on As-contaminated water and soil: A recent update. Advances in Chemical Pollution, Environmental Management and Protection, 2021, 7, 107-136.	0.3	2