
Manunya Nuth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4051203/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Ironâ^'Sulfur Cluster Biosynthesis:Â Characterization of Iron Nucleation Sites for Assembly of the [2Feâ^'2S]2+Cluster Core in IscU Proteins. Journal of the American Chemical Society, 2002, 124, 8774-8775.	13.7	76
2	Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation. Radiation Research, 2008, 169, 384-396.	1.5	69
3	Design of Potent Poxvirus Inhibitors of the Heterodimeric Processivity Factor Required for Viral Replication. Journal of Medicinal Chemistry, 2013, 56, 3235-3246.	6.4	66
4	Protective Effects of Dietary Antioxidants on Proton Total-Body Irradiation-Mediated Hematopoietic Cell and Animal Survival. Radiation Research, 2009, 172, 175-186.	1.5	47
5	Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection. Molecular Therapy, 2022, 30, 1966-1978.	8.2	39
6	Identification of Inhibitors that Block Vaccinia Virus Infection by Targeting the DNA Synthesis Processivity Factor D4. Journal of Medicinal Chemistry, 2011, 54, 3260-3267.	6.4	28
7	Identification of Protein-Protein Interaction Inhibitors Targeting Vaccinia Virus Processivity Factor for Development of Antiviral Agents. Antimicrobial Agents and Chemotherapy, 2011, 55, 5054-5062.	3.2	19
8	Iron–sulfur cluster biosynthesis: characterization of IscU–IscS complex formation and a structural model for sulfide delivery to the [2Fe–2S] assembly site. Journal of Biological Inorganic Chemistry, 2009, 14, 829-839.	2.6	13
9	Unique roles of iron and zinc binding to the yeast Fe–S cluster scaffold assembly protein "lsu1― Metallomics, 2019, 11, 1820-1835.	2.4	12
10	Poxvirus uracilâ€ÐNA glycosylase—An unusual member of the family I uracilâ€ÐNA glycosylases. Protein Science, 2016, 25, 2113-2131.	7.6	11
11	A Novel Target and Approach for Identifying Antivirals against Molluscum Contagiosum Virus. Antimicrobial Agents and Chemotherapy, 2014, 58, 7383-7389.	3.2	9
12	The processivity factor complex of feline herpes virus-1 is a new drug target. Antiviral Research, 2015, 115, 17-20.	4.1	8
13	Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor. Antiviral Research, 2019, 162, 178-185.	4.1	8
14	Herpes Simplex Virus-1 infection in human primary corneal epithelial cells is blocked by a stapled peptide that targets processive DNA synthesis. Ocular Surface, 2021, 19, 313-321.	4.4	8
15	Crystallization and preliminary X-ray diffraction analysis of three recombinant mutants of <i>Vaccinia virus</i> uracil DNA glycosylase. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 295-301.	0.7	6
16	A Conserved Tripeptide Sequence at the C Terminus of the Poxvirus DNA Processivity Factor D4 Is Essential for Protein Integrity and Function. Journal of Biological Chemistry, 2016, 291, 27087-27097.	3.4	5
17	Discovery of a potent cytotoxic agent that promotes G ₂ /M phase cell cycle arrest and apoptosis in a malignant human pharyngeal squamous carcinoma cell line. International Journal of Oncology, 2022, 60, .	3.3	2