
Frank Boury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4051006/publications.pdf Version: 2024-02-01

FDANK ROUDY

#	Article	IF	CITATIONS
1	New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 2010, 146, 276-290.	4.8	280
2	NGF release from poly(d,l-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability. Journal of Controlled Release, 1998, 56, 175-187.	4.8	150
3	Characterization and biocompatibility of organogels based on I-alanine for parenteral drug delivery implants. Biomaterials, 2005, 26, 6242-6253.	5.7	135
4	Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres?. Pharmaceutical Research, 1999, 16, 1294-1299.	1.7	125
5	Evidence and characterization of complex coacervates containing plant proteins: application to the microencapsulation of oil droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 232, 239-247.	2.3	120
6	Dynamic Properties of Poly(DL-lactide) and Polyvinyl Alcohol Monolayers at the Air/Water and Dichloromethane/Water Interfaces. Journal of Colloid and Interface Science, 1995, 169, 380-392.	5.0	106
7	Conformational Modifications of α Gliadin and Globulin Proteins upon Complex Coacervates Formation with Gum Arabic as Studied by Raman Microspectroscopy. Biomacromolecules, 2006, 7, 2616-2623.	2.6	83
8	Bovine serum albumin release from poly(α-hydroxy acid) microspheres: effects of polymer molecular weight and surface properties. Journal of Controlled Release, 1997, 45, 75-86.	4.8	79
9	Synthesis of hollow vaterite CaCO3 microspheres in supercritical carbon dioxide medium. Journal of Materials Chemistry, 2011, 21, 9757.	6.7	71
10	Rheological Model for the Study of Dilational Properties of Monolayers. Comportment of Dipalmitoylphosphatidylcholine (DPPC) at the Dichloromethane (DCM)/Water Interface under Ramp Type or Sinusoidal Perturbations. Langmuir, 2001, 17, 8104-8111.	1.6	70
11	Thermodynamic and Dynamic Interfacial Properties of Binary Carbon Dioxideâ^Water Systems. Journal of Physical Chemistry B, 2004, 108, 2405-2412.	1.2	64
12	Adsorption Kinetics and Rheological Interfacial Properties of Plant Proteins at the Oilâ^'Water Interface. Biomacromolecules, 2004, 5, 2088-2093.	2.6	56
13	Rheological Interfacial Properties of Plant Proteinâ^'Arabic Gum Coacervates at the Oilâ^'Water Interface. Biomacromolecules, 2005, 6, 790-796.	2.6	55
14	Dilatational Properties of Adsorbed Poly(D,L-lactide) and Bovine Serum Albumin Monolayers at the Dichloromethane/Water Interface. Langmuir, 1995, 11, 1636-1644.	1.6	50
15	Formation and Rheological Properties of the Supercritical CO2â~'Water Pure Interface. Journal of Physical Chemistry B, 2005, 109, 3990-3997.	1.2	50
16	Synthesis and characterization of CaCO 3 –biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin. Colloids and Surfaces B: Biointerfaces, 2014, 123, 158-169.	2.5	50
17	Hydrolysis kinetics of poly(d,l-lactide) monolayers spread on basic or acidic aqueous subphases. Colloids and Surfaces B: Biointerfaces, 1997, 8, 217-225.	2.5	45
18	Effect of hydrophobic protein SP-C on structure and dilatational properties of the model monolayers of pulmonary surfactant. Colloids and Surfaces B: Biointerfaces, 1996, 6, 243-260.	2.5	40

#	Article	lF	CITATIONS
19	Lysozyme encapsulation into nanostructured CaCO3 microparticles using a supercritical CO2 process and comparison with the normal route. Journal of Materials Chemistry B, 2013, 1, 4011.	2.9	40
20	Small-angle X-ray scattering analysis of porous powders of CaCO ₃ . Journal of Applied Crystallography, 2012, 45, 881-889.	1.9	39
21	Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 38-50.	2.0	39
22	PLA scaffolds production from Thermally Induced Phase Separation: Effect of process parameters and development of an environmentally improved route assisted by supercritical carbon dioxide. Journal of Supercritical Fluids, 2018, 136, 123-135.	1.6	38
23	Macroporous poly(ionic liquid) and poly(acrylamide) monoliths from CO2-in-water emulsion templates stabilized by sugar-based surfactants. Journal of Materials Chemistry A, 2013, 1, 8479.	5.2	36
24	Plant protein–polysaccharide interactions in solutions: application of soft particle analysis and light scattering measurements. Colloids and Surfaces B: Biointerfaces, 2005, 41, 95-102.	2.5	34
25	Self-Assembled Monolayers of Bisphosphonates: Influence of Side Chain Steric Hindrance. Langmuir, 2009, 25, 7828-7835.	1.6	33
26	Dilatational Properties of Poly(DL-lactic acid) and Bovine Serum Albumin Monolayers Spread at the Air/Water Interface. Langmuir, 1995, 11, 599-606.	1.6	30
27	First-Order Transition in a Polymer Monolayer: Structural Analysis by Transmission Electronic Microscopy and Atomic Force Microscopy. Langmuir, 1994, 10, 1654-1656.	1.6	28
28	Dilational viscoelasticity and relaxation properties of interfacial electrostatic complexes between oppositely charged hydrophobic and hydrophilic polyelectrolytes. Colloids and Surfaces B: Biointerfaces, 2008, 65, 43-49.	2.5	28
29	Hybrid Gd ³⁺ /cisplatin cross-linked polymer nanoparticles enhance platinum accumulation and formation of DNA adducts in glioblastoma cell lines. Biomaterials Science, 2018, 6, 2386-2409.	2.6	28
30	Lysozyme encapsulation within PLGA and CaCO3 microparticles using supercritical CO2 medium. Journal of Supercritical Fluids, 2013, 79, 159-169.	1.6	27
31	Adsorption kinetics of hydrophobic polysoaps at the methylene chloride–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 243, 33-42.	2.3	26
32	1H NMR relaxation studies of protein–polysaccharide mixtures. International Journal of Biological Macromolecules, 2008, 43, 359-366.	3.6	26
33	A Study of Poly(α-hydroxy acid)s Monolayers Spread at the Air/Water Interface: Influence of the D,L-Lactic Acid/Glycolic Acid Ratio. Journal of Colloid and Interface Science, 1993, 160, 1-9.	5.0	25
34	Impact of bulk and surface properties of some biocompatible hydrophobic polymers on the stability of methylene chloride-in-water mini-emulsions used to prepare nanoparticles by emulsification–solvent evaporation. Colloids and Surfaces B: Biointerfaces, 2007, 59, 194-207.	2.5	25
35	Interfacial Properties of Mixed Polyethylene Glycol/Poly(d,l-lactide-co-glycolide) Films Spread at the Air/Water Interface. Langmuir, 2000, 16, 1861-1867.	1.6	24
36	Influence of some formulation parameters on lysozyme adsorption and on its stability in solution. International Journal of Pharmaceutics, 2002, 242, 405-409.	2.6	24

#	Article	IF	CITATIONS
37	Aerogel sponges of silk fibroin, hyaluronic acid and heparin for soft tissue engineering: Composition-properties relationship. Carbohydrate Polymers, 2020, 237, 116107.	5.1	24
38	Interfacial properties of amiodarone: the stabilizing effect of phosphate anions. Colloids and Surfaces B: Biointerfaces, 2001, 20, 219-227.	2.5	23
39	Enzymatic hydrolysis of poly(D, L-lactide) spread monolayers by cutinase. Colloid and Polymer Science, 1997, 275, 449-457.	1.0	22
40	Interfacial and emulsifying properties of amaranth (Amaranthus hypochondriacus) protein isolates under different conditions of pH. LWT - Food Science and Technology, 2012, 45, 1-7.	2.5	22
41	Synthesis, Characterization, and In Vitro Studies of an Reactive Oxygen Species (ROS)-Responsive Methoxy Polyethylene Glycol-Thioketal-Melphalan Prodrug for Glioblastoma Treatment. Frontiers in Pharmacology, 2020, 11, 574.	1.6	21
42	Liquid Crystals and Colloids in Waterâ [^] Amiodarone Systems. Langmuir, 1998, 14, 542-546.	1.6	19
43	Direct qualitative and quantitative characterization of a radiosensitizer, 5-iodo-2′-deoxyuridine within biodegradable polymeric microspheres by FT-Raman spectroscopy. Analyst, The, 1999, 124, 37-42.	1.7	19
44	Interfacial Properties of a PEG2000â^'PLA50 Diblock Copolymer at the Air/Water Interface. Langmuir, 2001, 17, 7837-7841.	1.6	19
45	Comparative whole corona fingerprinting and protein adsorption thermodynamics of PLGA and PCL nanoparticles in human serum. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110816.	2.5	19
46	Curdlan–Chitosan Electrospun Fibers as Potential Scaffolds for Bone Regeneration. Polymers, 2021, 13, 526.	2.0	19
47	Interactions between poly(ethylene glycol) and protein in dichloromethane/water emulsions: A study of interfacial properties. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 835-843.	2.0	18
48	Interactions of Poly (α-hydroxy Acid)s with Poly (vinyl Alcohol) at the Air/Water and at the Dichloromethane/Water Interfaces. Journal of Colloid and Interface Science, 1994, 163, 37-48.	5.0	17
49	Enzymatic hydrolysis by cutinase of PEG-co PLA copolymers spread monolayers. Colloids and Surfaces B: Biointerfaces, 2003, 32, 307-320.	2.5	17
50	Spectroscopic studies on poly(ethylene glycol)–lysozyme interactions. International Journal of Pharmaceutics, 2003, 260, 175-186.	2.6	17
51	Preparation of polymeric particles in CO2 medium using non-toxic solvents: Formulation and comparisons with a phase separation method. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 498-507.	2.0	17
52	Dynamical and Rheological Properties of Fluorinated Surfactant Films Adsorbed at the Pressurized CO ₂ –H ₂ O Interface. Langmuir, 2011, 27, 8144-8152.	1.6	16
53	Phase transformations in CaCO ₃ /iron oxide composite induced by thermal treatment and laser irradiation. Journal of Raman Spectroscopy, 2013, 44, 489-495.	1.2	16
54	Rheological Study of Lysozyme and PEG2000 at the Airâ^'Water and Dichloromethaneâ^'Water Interfaces under Ramp Type or Sinusoidal Perturbations. Langmuir, 2002, 18, 10248-10254.	1.6	15

#	Article	IF	CITATIONS
55	Effect of H2Oâ^'CO2Organization on Ovalbumin Adsorption at the Supercritical CO2â^'Water Interface. Journal of Physical Chemistry B, 2005, 109, 1874-1881.	1.2	15
56	The influence of headgroup structure and fatty acyl chain saturation of phospholipids on monolayer behavior: a comparative rheological study. Chemistry and Physics of Lipids, 2007, 150, 167-175.	1.5	15
57	Reversing the Tumor Target: Establishment of a Tumor Trap. Frontiers in Pharmacology, 2019, 10, 887.	1.6	15
58	Dilatational Properties of Poly(D,L-lactic acid) and Bovine Serum Albumin Monolayers Formed from Spreading an Oil-in-Water Emulsion at the Air/Water Interface. Langmuir, 1995, 11, 2131-2136.	1.6	14
59	Interfacial properties of adsorbed films made of a PEG2000 and PLA50 mixture or a copolymer at the dichloromethane–water interface. Journal of Colloid and Interface Science, 2003, 259, 398-407.	5.0	14
60	Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles. International Journal of Pharmaceutics, 2016, 513, 130-137.	2.6	14
61	Protein–polysaccharide complexes for enhanced protein delivery in hyaluronic acid templated calcium carbonate microparticles. Journal of Materials Chemistry B, 2017, 5, 7360-7368.	2.9	14
62	Eco-friendly processes for the synthesis of amorphous calcium carbonate nanoparticles in ethanol and their stabilisation in aqueous media. Green Chemistry, 2022, 24, 1270-1284.	4.6	14
63	Nanoparticle-containing electrospun nanofibrous scaffolds for sustained release of SDF-1α. International Journal of Pharmaceutics, 2021, 610, 121205.	2.6	13
64	Quantification of the Dissolved Inorganic Carbon Species and of the pH of Alkaline Solutions Exposed to CO2 under Pressure: A Novel Approach by Raman Scattering. Analytical Chemistry, 2014, 86, 9895-9900.	3.2	12
65	A Quantitative Method for the Determination of Amphiphilic Drug Release Kinetics from Nanoparticles Using a Langmuir Balance. Analytical Chemistry, 2002, 74, 3416-3420.	3.2	10
66	Fluorescent Self-Assembled Monolayers of Umbelliferone: A Relationship between Contact Angle and Fluorescence. Langmuir, 2013, 29, 10423-10431.	1.6	9
67	Impact of the physico-chemical properties of polymeric microspheres functionalized with cell adhesion molecules on the behavior of mesenchymal stromal cells. Materials Science and Engineering C, 2021, 121, 111852.	3.8	9
68	Interactions between hen egg-white lysozyme, PEG2,000, and PLA50 at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2005, 42, 97-106.	2.5	8
69	Characterization of the morphology of poly(α-hydroxy acid)s Langmuir–Blodgett films by atomic force microscopy measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 117-129.	2.3	7
70	Mild synthesis of poly(HEMA)-networks as well-defined nanoparticles in supercritical carbon dioxide. Journal of Materials Chemistry B, 2017, 5, 5806-5815.	2.9	7
71	Rapamycin-Loaded Lipid Nanocapsules Induce Selective Inhibition of the mTORC1-Signaling Pathway in Glioblastoma Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 602998.	2.0	7
72	Role of the electrostatic interactions on the basic or acidic hydrolysis kinetics of poly-(d,l-lactide) monolayers. Colloids and Surfaces B: Biointerfaces, 2000, 17, 241-254.	2.5	6

#	Article	IF	CITATIONS
73	Basic and enzymatic hydrolysis in mixed polyethylene glycol/poly(d,l-lactide-co-glycolide) films spread at the air-water interface. Colloids and Surfaces B: Biointerfaces, 2002, 23, 7-21.	2.5	6
74	Monolayer kinetic model of formation of β-cyclodextrin–β-carotene inclusion complex. Colloids and Surfaces B: Biointerfaces, 2015, 135, 542-548.	2.5	6
75	Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. International Journal of Pharmaceutics, 2015, 493, 357-365.	2.6	6
76	Interfacial behavior of HDL3 spread at air/water interface. I. Dynamic properties. Colloids and Surfaces B: Biointerfaces, 1999, 13, 221-231.	2.5	5
77	Dynamic and rheological properties of classic and macromolecular surfactant at the supercritical CO2–H2O interface. Journal of Supercritical Fluids, 2006, 37, 375-383.	1.6	5
78	Dilational rheology and relaxation properties of the adsorption layers of electrostatic complexes between Eudragit RS and chitosan sulfate at the methylene chloride–water interface. Mendeleev Communications, 2008, 18, 35-37.	0.6	5
79	Enzymatic proteolysis of alpha gliadin monolayer spread at the air–water interface. Journal of Colloid and Interface Science, 2010, 347, 69-73.	5.0	5
80	The lyotropic polymorphism of two pharmacologically active molecules. Liquid Crystals, 1999, 26, 1281-1293.	0.9	4
81	Adsorption of CETP on monolayers formed from HDL extracted lipids. Colloids and Surfaces B: Biointerfaces, 2000, 17, 1-9.	2.5	4
82	Surface activity of a fluorinated carbohydrate ester in water/carbon dioxide emulsions. Journal of Colloid and Interface Science, 2013, 398, 273-275.	5.0	4
83	Preparation of polymeric particles in CO ₂ medium using non-toxic solvents: discussions on the mechanism of particle formation. Journal of Materials Chemistry B, 2015, 3, 1573-1582.	2.9	4
84	Relating polymeric microparticle formulation to prevalence or distribution of fibronectin and poly- <scp>d</scp> -lysine to support mesenchymal stem cell growth. Biointerphases, 2020, 15, 041008.	0.6	4
85	Modification of the surface free energy components of a polymer by adsorption of poly(oxyethylene)-poly(oxypropylene) block co-polymers. Journal of Adhesion Science and Technology, 1992, 6, 1359-1369.	1.4	3
86	Interactions between poly(ethylene glycol) and protein in dichloromethane/water emulsions. 2. Conditions required to obtain spontaneous emulsification allowing the formation of bioresorbable poly(d,l lactic acid) microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 66-73.	2.0	3
87	Interfacial behavior of HDL3 spread at air/water interface. II. Structural analysis by AFM. Colloids and Surfaces B: Biointerfaces, 1999, 13, 233-240.	2.5	2
88	Oil/water "hand-bag like structuresâ€; how interfacial rheology can help to understand their formation?. Journal of Drug Delivery Science and Technology, 2005, 15, 3-9.	1.4	2
89	Synchrotron X-ray In Situ Tomography of Thermally Induced Phase Separation of Polylactic Acid in 1,4-Dioxane Solution. Crystal Growth and Design, 2018, 18, 7496-7503.	1.4	2