
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4050824/publications.pdf Version: 2024-02-01

KEDDY S RIDOM

#	Article	IF	CITATIONS
1	Disruption of mitotic spindle orientation in a yeast dynein mutant Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10096-10100.	3.3	384
2	Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae Journal of Cell Biology, 1995, 130, 687-700.	2.3	369
3	Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nature Biotechnology, 2011, 29, 361-367.	9.4	352
4	Fractionation of hen oviduct chromatin into transcriptionally active and inactive regions after selective micrococcal nuclease digestion. Cell, 1978, 15, 141-150.	13.5	326
5	Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell, 1982, 29, 305-317.	13.5	326
6	Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud. Journal of Cell Biology, 1997, 139, 985-994.	2.3	280
7	Molecular architecture of a kinetochore–microtubule attachment site. Nature Cell Biology, 2006, 8, 581-585.	4.6	263
8	Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events Molecular and Cellular Biology, 1994, 14, 1293-1301.	1.1	220
9	The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nature Cell Biology, 2000, 2, 36-41.	4.6	216
10	Localization and anchoring of mRNA in budding yeast. Current Biology, 1999, 9, 569-S1.	1.8	208
11	Genetic manipulation of centromere function Molecular and Cellular Biology, 1987, 7, 2397-2405.	1.1	206
12	Budding Yeast Chromosome Structure and Dynamics during Mitosis. Journal of Cell Biology, 2001, 152, 1255-1266.	2.3	198
13	Centromeres: unique chromatin structures that drive chromosome segregation. Nature Reviews Molecular Cell Biology, 2011, 12, 320-332.	16.1	186
14	Point centromeres contain more than a single centromere-specific Cse4 (CENP-A) nucleosome. Journal of Cell Biology, 2011, 195, 573-582.	2.3	185
15	The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Current Biology, 2000, 10, 1497-1506.	1.8	178
16	In Vivo Protein Architecture of the Eukaryotic Kinetochore with Nanometer Scale Accuracy. Current Biology, 2009, 19, 694-699.	1.8	170
17	Chromosome Congression by Kinesin-5 Motor-Mediated Disassembly of Longer Kinetochore Microtubules. Cell, 2008, 135, 894-906.	13.5	168
18	Dynamic Positioning of Mitotic Spindles in Yeast:. Molecular Biology of the Cell, 2000, 11, 3949-3961.	0.9	150

#	Article	IF	CITATIONS
19	Pericentric Chromatin Is Organized into an Intramolecular Loop in Mitosis. Current Biology, 2008, 18, 81-90.	1.8	148
20	Control of Microtubule Dynamics by Stu2p Is Essential for Spindle Orientation and Metaphase Chromosome Alignment in Yeast. Molecular Biology of the Cell, 2001, 12, 2870-2880.	0.9	146
21	Stable Kinetochore-Microtubule Attachment Constrains Centromere Positioning in Metaphase. Current Biology, 2004, 14, 1962-1967.	1.8	144
22	Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. Journal of Cell Biology, 2008, 181, 587-594.	2.3	144
23	Chromosome Fragmentation after Induction of a Double-Strand Break Is an Active Process Prevented by the RMX Repair Complex. Current Biology, 2004, 14, 2107-2112.	1.8	140
24	Dynamic Microtubules Lead the Way for Spindle Positioning. Nature Reviews Molecular Cell Biology, 2004, 5, 481-492.	16.1	130
25	Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. Journal of Cell Biology, 2011, 193, 1167-1180.	2.3	126
26	Tension-dependent Regulation of Microtubule Dynamics at Kinetochores Can Explain Metaphase Congression in Yeast. Molecular Biology of the Cell, 2005, 16, 3764-3775.	0.9	124
27	Phosphorylation of γ-Tubulin Regulates Microtubule Organization in Budding Yeast. Developmental Cell, 2001, 1, 621-631.	3.1	115
28	Mitotic Spindle Form and Function. Genetics, 2012, 190, 1197-1224.	1.2	115
29	Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends in Cell Biology, 2001, 11, 160-166.	3.6	105
30	Mechanisms of force generation by end-on kinetochore-microtubule attachments. Current Opinion in Cell Biology, 2010, 22, 57-67.	2.6	104
31	Chemical Genetics Reveals a Role for Mps1 Kinase in Kinetochore Attachment during Mitosis. Current Biology, 2005, 15, 160-165.	1.8	100
32	Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. Journal of Cell Biology, 2010, 188, 69-81.	2.3	100
33	Chromatin conformation of yeast centromeres Journal of Cell Biology, 1984, 99, 1559-1568.	2.3	97
34	Mechanisms of Microtubule-Based Kinetochore Positioning in the Yeast Metaphase Spindle. Biophysical Journal, 2003, 84, 3529-3546.	0.2	93
35	Mps1 Phosphorylation of Dam1 Couples Kinetochores to Microtubule Plus Ends at Metaphase. Current Biology, 2006, 16, 1489-1501.	1.8	93
36	Chromatin structure of altered yeast centromeres Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 175-179.	3.3	89

#	Article	IF	CITATIONS
37	The Differential Roles of Budding Yeast Tem1p, Cdc15p, and Bub2p Protein Dynamics in Mitotic Exit. Molecular Biology of the Cell, 2004, 15, 1519-1532.	0.9	89
38	Centromere Tethering Confines Chromosome Domains. Molecular Cell, 2013, 52, 819-831.	4.5	88
39	The Role of Actin in Spindle Orientation Changes during the Saccharomyces cerevisiae Cell Cycle. Journal of Cell Biology, 1999, 146, 1019-1032.	2.3	86
40	Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. Journal of Cell Biology, 2005, 170, 583-594.	2.3	86
41	Microtubule Dynamics from Mating through the First Zygotic Division in the Budding Yeast Saccharomyces cerevisiae. Journal of Cell Biology, 1999, 144, 977-987.	2.3	85
42	A dynamin-like protein encoded by the yeast sporulation gene SP015. Nature, 1991, 349, 713-715.	13.7	84
43	Thin-foil magnetic force system for high-numerical-aperture microscopy. Review of Scientific Instruments, 2006, 77, 023702.	0.6	84
44	Identification of a Mid-anaphase Checkpoint in Budding Yeast. Journal of Cell Biology, 1997, 136, 345-354.	2.3	79
45	Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae. Current Biology, 1997, 7, 701-704.	1.8	78
46	Pericentric Chromatin Is an Elastic Component of the Mitotic Spindle. Current Biology, 2007, 17, 741-748.	1.8	78
47	Analysis of the complexity and frequency of zein genes in the maize genome. Biochemistry, 1980, 19, 1644-1650.	1.2	76
48	The centromere frontier: Kinetochore components, microtubule-based motility, and the CEN-value paradox. Cell, 1993, 73, 621-624.	13.5	76
49	Yeast Kinetochores Do Not Stabilize Stu2p-dependent Spindle Microtubule Dynamics. Molecular Biology of the Cell, 2003, 14, 4181-4195.	0.9	75
50	Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae Molecular and Cellular Biology, 1989, 9, 1368-1370.	1.1	73
51	SUMO-targeted ubiquitin ligase (STUbL) Slx5 regulates proteolysis of centromeric histone H3 variant Cse4 and prevents its mislocalization to euchromatin. Molecular Biology of the Cell, 2016, 27, 1500-1510.	0.9	73
52	A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress–induced membrane biogenesis. Molecular Biology of the Cell, 2014, 25, 712-727.	0.9	71
53	How the kinetochore couples microtubule force and centromere stretch to move chromosomes. Nature Cell Biology, 2016, 18, 382-392.	4.6	70
54	The Minus End-Directed Motor Kar3 Is Required for Coupling Dynamic Microtubule Plus Ends to the Cortical Shmoo Tip in Budding Yeast. Current Biology, 2003, 13, 1423-1428.	1.8	69

#	Article	IF	CITATIONS
55	Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Molecular Biology of the Cell, 2017, 28, 1701-1711.	0.9	69
56	Structural Analysis and Sequence Organization of Yeast Centromeres. Cold Spring Harbor Symposia on Quantitative Biology, 1983, 47, 1175-1185.	2.0	69
57	FBW7 Loss Promotes Chromosomal Instability and Tumorigenesis via Cyclin E1/CDK2–Mediated Phosphorylation of CENP-A. Cancer Research, 2017, 77, 4881-4893.	0.4	68
58	Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres Molecular and Cellular Biology, 1990, 10, 5721-5727.	1.1	67
59	Î ² -Tubulin C354 Mutations that Severely Decrease Microtubule Dynamics Do Not Prevent Nuclear Migration in Yeast. Molecular Biology of the Cell, 2002, 13, 2919-2932.	0.9	65
60	The microtubule-based motor Kar3 and plus end–binding protein Bim1 provide structural support for the anaphase spindle. Journal of Cell Biology, 2008, 180, 91-100.	2.3	64
61	Centromeric Heterochromatin: The Primordial Segregation Machine. Annual Review of Genetics, 2014, 48, 457-484.	3.2	64
62	Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus. Nucleic Acids Research, 2017, 45, 11159-11173.	6.5	64
63	Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast. Journal of Cell Biology, 2000, 148, 441-452.	2.3	61
64	Towards building a chromosome segregation machine. Nature, 2010, 463, 446-456.	13.7	61
65	Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. Journal of Cell Biology, 2003, 160, 833-843.	2.3	58
66	Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma, 2008, 117, 103-110.	1.0	58
67	Bud6 Directs Sequential Microtubule Interactions with the Bud Tip and Bud Neck during Spindle Morphogenesis inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2000, 11, 3689-3702.	0.9	57
68	Nuclear migration: Cortical anchors for cytoplasmic dynein. Current Biology, 2001, 11, R326-R329.	1.8	57
69	Dicentric Chromosome Stretching during Anaphase Reveals Roles of Sir2/Ku in Chromatin Compaction in Budding Yeast. Molecular Biology of the Cell, 2001, 12, 2800-2812.	0.9	57
70	Function and Assembly of DNA Looping, Clustering, and Microtubule Attachment Complexes within a Eukaryotic Kinetochore. Molecular Biology of the Cell, 2009, 20, 4131-4139.	0.9	56
71	Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. Journal of Cell Biology, 2013, 200, 757-772.	2.3	56
72	Kinesin-8 molecular motors: putting the brakes on chromosome oscillations. Trends in Cell Biology, 2008, 18, 307-310.	3.6	55

#	Article	IF	CITATIONS
73	A 3D Map of the Yeast Kinetochore Reveals the Presence of Core and Accessory Centromere-Specific Histone. Current Biology, 2013, 23, 1939-1944.	1.8	55
74	Centromeres: An Integrated Protein/DNA Complex Required for Chromosome Movement. Annual Review of Cell Biology, 1991, 7, 311-336.	26.0	54
75	Counting Kinetochore Protein Numbers in Budding Yeast Using Genetically Encoded Fluorescent Proteins. Methods in Cell Biology, 2008, 85, 127-151.	0.5	54
76	lt's a kar9ochore to capture microtubules. Nature Cell Biology, 2000, 2, E96-E98.	4.6	53
77	The kinetochore protein Ndc10p is required for spindle stability and cytokinesis in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5408-5413.	3.3	50
78	Design Features of a Mitotic Spindle: Balancing Tension and Compression at a Single Microtubule Kinetochore Interface in Budding Yeast. Annual Review of Genetics, 2008, 42, 335-359.	3.2	49
79	Determining absolute protein numbers by quantitative fluorescence microscopy. Methods in Cell Biology, 2014, 123, 347-365.	0.5	49
80	Microtubule motors in eukaryotic spindle assembly and maintenance. Seminars in Cell and Developmental Biology, 2010, 21, 248-254.	2.3	46
81	Bub1 Kinase and Sgo1 Modulate Pericentric Chromatin in Response to Altered Microtubule Dynamics. Current Biology, 2012, 22, 471-481.	1.8	46
82	DNA loops generate intracentromere tension in mitosis. Journal of Cell Biology, 2015, 210, 553-564.	2.3	46
83	Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae. Journal of Cell Biology, 2006, 172, 27-39.	2.3	45
84	TheSaccharomyces cerevisiaeSpindle Pole Body Is a Dynamic Structure. Molecular Biology of the Cell, 2003, 14, 3494-3505.	0.9	43
85	ASH1 mRNA Localization in Three Acts. Molecular Biology of the Cell, 2001, 12, 2567-2577.	0.9	42
86	DNA relaxation dynamics as a probe for the intracellular environment. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9250-9255.	3.3	42
87	Chapter 10 A High-Resolution Multimode Digital Microscope System. Methods in Cell Biology, 1998, 56, 185-215.	0.5	41
88	Measuring Nanometer Scale Gradients in Spindle Microtubule Dynamics Using Model Convolution Microscopy. Molecular Biology of the Cell, 2006, 17, 4069-4079.	0.9	40
89	Entropy gives rise to topologically associating domains. Nucleic Acids Research, 2016, 44, 5540-5549.	6.5	40
90	Centromere Structure and Function. Progress in Molecular and Subcellular Biology, 2017, 56, 515-539.	0.9	40

#	Article	IF	CITATIONS
91	Tightly centromere-linked gene (SPO15) essential for meiosis in the yeast Saccharomyces cerevisiae Molecular and Cellular Biology, 1986, 6, 158-167.	1.1	39
92	ChromoShake: a chromosome dynamics simulator reveals that chromatin loops stiffen centromeric chromatin. Molecular Biology of the Cell, 2016, 27, 153-166.	0.9	39
93	Nuclear and Spindle Dynamics in Budding Yeast. Molecular Biology of the Cell, 1998, 9, 1627-1631.	0.9	38
94	The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11358-11363.	3.3	38
95	Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant. Chromosome Research, 2013, 21, 101-106.	1.0	37
96	<scp>B</scp> ending the Rules: Widefield Microscopy and the Abbe Limit of Resolution. Journal of Cellular Physiology, 2014, 229, 132-138.	2.0	37
97	Systematic Triple-Mutant Analysis Uncovers Functional Connectivity between Pathways Involved in Chromosome Regulation. Cell Reports, 2013, 3, 2168-2178.	2.9	36
98	Kar9p-independent Microtubule Capture at Bud6p Cortical Sites Primes Spindle Polarity before Bud Emergence inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 4141-4155.	0.9	35
99	The path of DNA in the kinetochore. Current Biology, 2006, 16, R276-R278.	1.8	35
100	Individual pericentromeres display coordinated motion and stretching in the yeast spindle. Journal of Cell Biology, 2013, 203, 407-416.	2.3	35
101	Tension-dependent nucleosome remodeling at the pericentromere in yeast. Molecular Biology of the Cell, 2012, 23, 2560-2570.	0.9	33
102	Cell structure and dynamics. Current Opinion in Cell Biology, 2007, 19, 1-4.	2.6	32
103	Model Convolution: A Computational Approach to Digital Image Interpretation. Cellular and Molecular Bioengineering, 2010, 3, 163-170.	1.0	32
104	The spatial segregation of pericentric cohesin and condensin in the mitotic spindle. Molecular Biology of the Cell, 2013, 24, 3909-3919.	0.9	32
105	The structure of a primitive kinetochore. Trends in Biochemical Sciences, 1989, 14, 223-227.	3.7	31
106	Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis. Journal of Cell Biology, 2014, 207, 189-199.	2.3	31
107	A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Current Biology, 2018, 28, 2697-2704.e3.	1.8	30
108	Nuclear oscillations and nuclear filament formation accompany single-strand annealing repair of a dicentric chromosome in Saccharomyces cerevisiae. Journal of Cell Science, 2003, 116, 561-569.	1.2	29

#	Article	IF	CITATIONS
109	Polymer models of interphase chromosomes. Nucleus, 2014, 5, 376-390.	0.6	29
110	Microtubule dynamics in the budding yeast mating pathway. Journal of Cell Science, 2006, 119, 3485-3490.	1.2	28
111	A Highâ€Resolution Multimode Digital Microscope System. Methods in Cell Biology, 2007, 81, 187-218.	0.5	28
112	Spatial signals link exit from mitosis to spindle position. ELife, 2016, 5, .	2.8	26
113	Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair, 2011, 10, 102-110.	1.3	25
114	R-loops at centromeric chromatin contribute to defects in kinetochore integrity and chromosomal instability in budding yeast. Molecular Biology of the Cell, 2021, 32, 74-89.	0.9	25
115	Centromere dynamics. Current Opinion in Genetics and Development, 2007, 17, 151-156.	1.5	24
116	Inferring Latent States and Refining Force Estimates via Hierarchical Dirichlet Process Modeling in Single Particle Tracking Experiments. PLoS ONE, 2015, 10, e0137633.	1.1	24
117	Polo kinase Cdc5 associates with centromeres to facilitate the removal of centromeric cohesin during mitosis. Molecular Biology of the Cell, 2016, 27, 2286-2300.	0.9	24
118	Tension Management in the Kinetochore. Current Biology, 2010, 20, R1040-R1048.	1.8	23
119	Pat1 protects centromere-specific histone H3 variant Cse4 from Psh1-mediated ubiquitination. Molecular Biology of the Cell, 2015, 26, 2067-2079.	0.9	23
120	tRNA Genes Affect Chromosome Structure and Function via Local Effects. Molecular and Cellular Biology, 2019, 39, .	1.1	23
121	Tension sensors reveal how the kinetochore shares its load. BioEssays, 2017, 39, 1600216.	1.2	22
122	RotoStep: A Chromosome Dynamics Simulator Reveals Mechanisms of Loop Extrusion. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 101-109.	2.0	22
123	Common Features of the Pericentromere and Nucleolus. Genes, 2019, 10, 1029.	1.0	20
124	Hypothesis testing via integrated computer modeling and digital fluorescence microscopy. Methods, 2007, 41, 232-237.	1.9	19
125	The regulation of chromosome segregation via centromere loops. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 352-370.	2.3	19
126	The rDNA is biomolecular condensate formed by polymer–polymer phase separation and is sequestered in the nucleolus by transcription and R-loops. Nucleic Acids Research, 2021, 49, 4586-4598.	6.5	19

#	Article	IF	CITATIONS
127	FluoroSim: A Visual Problem-Solving Environment for Fluorescence Microscopy. Eurographics Workshop on Visual Computing for Biomedicine, 2008, 2008, 151-158.	4.0	19
128	Chapter 19 Using Green Fluorescent Protein Fusion Proteins to Quantitate Microtubule and Spindle Dynamics in Budding Yeast. Methods in Cell Biology, 1998, 61, 369-383.	0.5	18
129	Persistent mechanical linkage between sister chromatids throughout anaphase. Chromosoma, 2009, 118, 633-645.	1.0	18
130	Genetic dissection of centromere function Molecular and Cellular Biology, 1993, 13, 3156-3166.	1.1	16
131	The role of centromere-binding factor 3 (CBF3) in spindle stability, cytokinesis, and kinetochore attachment. Biochemistry and Cell Biology, 2005, 83, 696-702.	0.9	16
132	Nonrandom Distribution of Interhomolog Recombination Events Induced by Breakage of a Dicentric Chromosome in <i>Saccharomyces cerevisiae</i> . Genetics, 2013, 194, 69-80.	1.2	16
133	Chromatin structures of Kluyveromyces lactis centromeres in K. lactis and Saccharomyces cerevisiae. Chromosoma, 1993, 102, 660-667.	1.0	15
134	Geometric partitioning of cohesin and condensin is a consequence of chromatin loops. Molecular Biology of the Cell, 2018, 29, 2737-2750.	0.9	15
135	Cdk1 phosphorylation of Esp1/Separase functions with PP2A and Slk19 to regulate pericentric Cohesin and anaphase onset. PLoS Genetics, 2018, 14, e1007029.	1.5	15
136	Selective excision of the centromere chromatin complex from Saccharomyces cerevisiae Journal of Cell Biology, 1988, 107, 9-15.	2.3	14
137	Statistical mechanics of chromosomes: <i>in vivo</i> and <i>in silico</i> approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties. Nucleic Acids Research, 2020, 48, 11284-11303.	6.5	14
138	The Locomotor Activity of Fish: An Analogy to the Kinetics of an Opposed First-Order Chemical Reaction. Transactions of the American Fisheries Society, 1975, 104, 752-754.	0.6	13
139	Heterogeneity and maintenance of centromere plasmid copy number inSaccharomyces cerevisiae. Chromosoma, 1990, 99, 281-288.	1.0	13
140	mRNA localization: motile RNA, asymmetric anchors. Current Opinion in Microbiology, 1999, 2, 604-609.	2.3	13
141	Yeast weighs in on the elusive spindle matrix: New filaments in the nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4757-4759.	3.3	13
142	Lessons learned from counting molecules: how to lure CENP-A into the kinetochore. Open Biology, 2014, 4, 140191.	1.5	13
143	Shaping centromeres to resist mitotic spindle forces. Journal of Cell Science, 2022, 135, .	1.2	12
144	Microtubule composition: Cryptography of dynamic polymers. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6839-6840.	3.3	11

#	Article	IF	CITATIONS
145	Transient crosslinking kinetics optimize gene cluster interactions. PLoS Computational Biology, 2019, 15, e1007124.	1.5	10
146	Fork pausing allows centromere DNA loop formation and kinetochore assembly. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11784-11789.	3.3	9
147	Behavior of dicentric chromosomes in budding yeast. PLoS Genetics, 2021, 17, e1009442.	1.5	9
148	[26] High-resolution video and digital-enhanced differential interference contrast light microscopy of cell division in budding yeast. Methods in Enzymology, 1998, 298, 317-331.	0.4	8
149	The SUMO deconjugating peptidase Smt4 contributes to the mechanism required for transition from sister chromatid arm cohesion to sister chromatid pericentromere separation. Cell Cycle, 2015, 14, 2206-2218.	1.3	8
150	Cdc7-mediated phosphorylation of Cse4 regulates high-fidelity chromosome segregation in budding yeast. Molecular Biology of the Cell, 2021, 32, ar15.	0.9	8
151	Centromeres and telomeres: structural element's of eukaryotic chromosomes. Current Opinion in Cell Biology, 1989, 1, 526-532.	2.6	7
152	Chromosome Segregation: Seeing Is Believing. Current Biology, 2005, 15, R500-R503.	1.8	7
153	Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences. Molecular Biology of the Cell, 2021, 32, 903-914.	0.9	7
154	A Cohesin-Based Partitioning Mechanism Revealed upon Transcriptional Inactivation of Centromere. PLoS Genetics, 2016, 12, e1006021.	1.5	7
155	The nucleosome repeat length of Kluyveromyces lactis is 16 bp longer than that of Saccharomyces cerevisiae. Nucleic Acids Research, 1993, 21, 2247-2248.	6.5	6
156	A High-Resolution Multimode Digital Microscope System. Methods in Cell Biology, 2013, 114, 179-210.	0.5	6
157	Al-Assisted Forward Modeling of Biological Structures. Frontiers in Cell and Developmental Biology, 2019, 7, 279.	1.8	6
158	DNA damage reduces heterogeneity and coherence of chromatin motions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
159	Hitching a ride. EMBO Reports, 2006, 7, 985-987.	2.0	5
160	Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Molecular Biology of the Cell, 2018, 29, 285-294.	0.9	5
161	UV-induced damage and repair in centromere DNA of yeast. Molecular Genetics and Genomics, 1987, 210, 16-22.	2.4	4
	No Cost C to bin of the Charle Coll 2006, 125, 17,19		

#	Article	IF	CITATIONS
163	Guidelines for publishing papers containing theory and modeling. Molecular Biology of the Cell, 2011, 22, 907-908.	0.9	4
164	Polymer perspective of genome mobilization. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821, 111706.	0.4	4
165	Structural analysis of a yeast centromere. BioEssays, 1986, 4, 100-104.	1.2	3
166	Cis- and trans-acting factors affecting the structure of yeast centromeres. Journal of Cell Science, 1989, 1989, 231-242.	1.2	3
167	Microtubule Cytoskeleton: Navigating the Intracellular Landscape. Current Biology, 2003, 13, R430-R432.	1.8	3
168	A High-Resolution Multimode Digital Microscope System. Methods in Cell Biology, 2003, 72, 185-216.	0.5	3
169	Uncovering chromatin's contribution to the mitotic spindle: Applications of computational and polymer models. Biochimie, 2010, 92, 1741-1748.	1.3	3
170	Liberating cohesin from cohesion. Genes and Development, 2017, 31, 2113-2114.	2.7	3
171	Characterization of a Tightly Centromere-Linked Gene Essential for Meiosis in the Yeast Saccharomyces Cerevisiae. , 1985, 36, 231-242.		3
172	Change in Size Distribution of Active Polyribosomes Associated with Puff Induction in Drosophila melanogaster Salivary Glands. Differentiation, 1976, 6, 151-154.	1.0	2
173	A novel method for the two-dimensional analysis of proteins. Analytical Biochemistry, 1979, 98, 410-416.	1.1	2
174	Nucleus and gene expression. Current Opinion in Cell Biology, 1992, 4, 377-378.	2.6	2
175	Effects of Steroid Hormones on Chicken Oviduct Chromatin. , 1983, , 17-59.		2
176	Mechanisms of DNA Mobilization and Sequestration. Genes, 2022, 13, 352.	1.0	2
177	Anniversary of the discovery/isolation of the yeast centromere by Clarke and Carbon. Molecular Biology of the Cell, 2015, 26, 1575-1577.	0.9	1
178	Cell Division: Single-Cell Physiology Reveals Secrets ofÂChromosome Condensation. Current Biology, 2018, 28, R117-R119.	1.8	1
179	Three-Dimensional Thermodynamic Simulation of Condensin as a DNA-Based Translocase. Methods in Molecular Biology, 2019, 2004, 291-318.	0.4	1
180	Cell Cycle Regulation of Centromere Function in Saccharomyces Cerevisiae. , 1993, , 111-120.		1

#	Article	IF	CITATIONS
181	Simulating Dynamic Chromosome Compaction: Methods for Bridging In Silico to In Vivo. Methods in Molecular Biology, 2022, 2415, 211-220.	0.4	1
182	Nucleus and gene expression. Current Opinion in Cell Biology, 1991, 3, 405-406.	2.6	0
183	Kinetochores and Microtubules Wed without a Ring. Cell, 2008, 135, 211-213.	13.5	Ο
184	A Close Look at Wiggly Chromosomes. Developmental Cell, 2013, 25, 330-332.	3.1	0
185	Intellectual immigration. Current Biology, 2013, 23, R221-R223.	1.8	0
186	Centromeres and Kinetochores: An Historical Perspective. , 2009, , 1-20.		0