
Antonio Molinaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4050703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	European consensus conference on faecal microbiota transplantation in clinical practice. Gut, 2017, 66, 569-580.	12.1	793
2	Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell, 2018, 175, 947-961.e17.	28.9	517
3	Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 2013, 42, 4709-4727.	38.1	464
4	<i>Arabidopsis</i> lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19824-19829.	7.1	442
5	Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017, 66, 429-437.	12.1	355
6	Role of Bile Acids in Metabolic Control. Trends in Endocrinology and Metabolism, 2018, 29, 31-41.	7.1	299
7	Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E404-13.	7.1	271
8	Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of <i>Escherichia coli</i> . Journal of Bacteriology, 2008, 190, 4460-4469.	2.2	218
9	Bacterial Polysaccharides Suppress Induced Innate Immunity by Calcium Chelation. Current Biology, 2008, 18, 1078-1083.	3.9	212
10	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 500-519.	3.3	193
11	The Elicitation of Plant Innate Immunity by Lipooligosaccharide of Xanthomonas campestris. Journal of Biological Chemistry, 2005, 280, 33660-33668.	3.4	168
12	Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology, 2010, 20, 406-419.	2.5	162
13	Hopanoid lipids: from membranes to plant–bacteria interactions. Nature Reviews Microbiology, 2018, 16, 304-315.	28.6	147
14	Cell surface polysaccharides of <i>Bifidobacterium bifidum</i> induce the generation of Foxp3 ⁺ regulatory T cells. Science Immunology, 2018, 3, .	11.9	145
15	Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nature Communications, 2018, 9, 242.	12.8	144
16	Microbe-Associated Molecular Patterns in Innate Immunity. Methods in Enzymology, 2010, 480, 89-115.	1.0	140
17	Invited review: Priming, induction and modulation of plant defence responses by bacterial lipopolysaccharides. Journal of Endotoxin Research, 2007, 13, 69-84.	2.5	138
18	Peptidoglycan and Muropeptides from Pathogens Agrobacterium and Xanthomonas Elicit Plant Innate Immunity: Structure and Activity. Chemistry and Biology, 2008, 15, 438-448.	6.0	129

#	Article	IF	CITATIONS
19	Degradation of complex carbohydrate: Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support. Food Chemistry, 2013, 139, 1081-1086.	8.2	128
20	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	12.8	122
21	PNPLA3 Gene Polymorphism Is Associated With Predisposition to and Severity of Alcoholic Liver Disease. American Journal of Gastroenterology, 2015, 110, 846-856.	0.4	120
22	Pseudomonas aeruginosa Exploits Lipid A and Muropeptides Modification as a Strategy to Lower Innate Immunity during Cystic Fibrosis Lung Infection. PLoS ONE, 2009, 4, e8439.	2.5	116
23	Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydrate Polymers, 2014, 99, 331-338.	10.2	102
24	Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiology Reviews, 2019, 43, 257-272.	8.6	102
25	Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in <i>Burkholderia cenocepacia</i> ^{â€} . Molecular Microbiology, 2012, 85, 962-974.	2.5	91
26	Chemical Basis of Peptidoglycan Discrimination by PrkC, a Key Kinase Involved in Bacterial Resuscitation from Dormancy. Journal of the American Chemical Society, 2011, 133, 20676-20679.	13.7	89
27	Ammonium hydroxide hydrolysis. Journal of Lipid Research, 2002, 43, 2188-2195.	4.2	88
28	Covalently linked hopanoid-lipid A improves outer-membrane resistance of a Bradyrhizobium symbiont of legumes. Nature Communications, 2014, 5, 5106.	12.8	88
29	Intracellular <i>Shigella</i> remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4345-54.	7.1	87
30	Microbial Imidazole Propionate Affects Responses to Metformin through p38Î ³ -Dependent Inhibitory AMPK Phosphorylation. Cell Metabolism, 2020, 32, 643-653.e4.	16.2	83
31	A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chemical Reviews, 2022, 122, 15767-15821.	47.7	82
32	Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance. MBio, 2017, 8, .	4.1	81
33	Glial fibrillary acidic protein as an early marker of hepatic stellate cell activation in chronic and posttransplant recurrent hepatitis C. Liver Transplantation, 2008, 14, 806-814.	2.4	80
34	Microbeâ€associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses. Molecular Plant Pathology, 2009, 10, 375-387.	4.2	76
35	Lignans from Arum italicum. Phytochemistry, 1994, 35, 777-779.	2.9	75
36	Review: Chemical and biological features of <i>Burkholderia cepacia</i> complex lipopolysaccharides. Innate Immunity, 2008, 14, 127-144.	2.4	70

#	Article	IF	CITATIONS
37	Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Molecular Therapy, 2019, 27, 1974-1991.	8.2	70
38	Chemical synthesis of glycans up to a 128-mer relevant to the O-antigen of Bacteroides vulgatus. Nature Communications, 2020, 11, 4142.	12.8	70
39	Muramylpeptide shedding modulates cell sensing of Shigella flexneri. Cellular Microbiology, 2008, 10, 682-695.	2.1	67
40	The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties. Carbohydrate Polymers, 2017, 157, 128-136.	10.2	66
41	Gut microbiota depletion exacerbates cholestatic liver injury via loss of FXR signalling. Nature Metabolism, 2021, 3, 1228-1241.	11.9	65
42	New conditions for matrix-assisted laser desorption/ionization mass spectrometry of native bacterial R-type lipopolysaccharides. Rapid Communications in Mass Spectrometry, 2005, 19, 1829-1834.	1.5	64
43	Identification of the Flagellin Glycosylation System in Burkholderia cenocepacia and the Contribution of Glycosylated Flagellin to Evasion of Human Innate Immune Responses. Journal of Biological Chemistry, 2014, 289, 19231-19244.	3.4	63
44	"Rules of Engagement―of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen, 2016, 5, 274-296.	1.9	62
45	The Complete Structure and Pro-inflammatory Activity of the Lipooligosaccharide of the Highly Epidemic and Virulent Gram-Negative BacteriumBurkholderia cenocepacia ET-12 (Strain J2315). Chemistry - A European Journal, 2007, 13, 3501-3511.	3.3	61
46	Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydrate Research, 2008, 343, 1924-1933.	2.3	61
47	Specific Hopanoid Classes Differentially Affect Free-Living and Symbiotic States of <i>Bradyrhizobium diazoefficiens</i> . MBio, 2015, 6, e01251-15.	4.1	60
48	Os <scp>CERK</scp> 1 plays a crucial role in the lipopolysaccharideâ€induced immune response of rice. New Phytologist, 2018, 217, 1042-1049.	7.3	60
49	Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum. Carbohydrate Polymers, 2017, 174, 1172-1180.	10.2	59
50	Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update. Marine Drugs, 2007, 5, 85-112.	4.6	58
51	Biosynthesis and Structure of the Burkholderia cenocepacia K56-2 Lipopolysaccharide Core Oligosaccharide. Journal of Biological Chemistry, 2009, 284, 21738-21751.	3.4	57
52	Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiology, 2014, 14, 137.	3.3	57
53	Insulin-Driven PI3K-AKT Signaling in the Hepatocyte Is Mediated by Redundant PI3Kα and PI3Kβ Activities and Is Promoted by RAS. Cell Metabolism, 2019, 29, 1400-1409.e5.	16.2	57
54	The Acylation and Phosphorylation Pattern of Lipid A from <i>Xanthomonas Campestris</i> Strongly Influence its Ability to Trigger the Innate Immune Response in Arabidopsis. ChemBioChem, 2008, 9, 896-904.	2.6	56

#	Article	IF	CITATIONS
55	Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology, 2005, 15, 561-570.	2.5	55
56	Pairing <i>Bacteroides vulgatus</i> LPS Structure with Its Immunomodulatory Effects on Human Cellular Models. ACS Central Science, 2020, 6, 1602-1616.	11.3	55
57	Determination of fatty acid positions in native lipid A by positive and negative electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 378-383.	1.6	51
58	Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Frontiers in Immunology, 2015, 6, 595.	4.8	51
59	An Unusual Galactofuranose Lipopolysaccharide That Ensures the Intracellular Survival of Toxinâ€Producing Bacteria in Their Fungal Host. Angewandte Chemie - International Edition, 2010, 49, 7476-7480.	13.8	50
60	Comparative genomics and biological characterization of sequential Pseudomonas aeruginosa isolates from persistent airways infection. BMC Genomics, 2015, 16, 1105.	2.8	50
61	Patatin-like phospholipase domain containing 3 sequence variant and hepatocellular carcinoma. Hepatology, 2011, 53, 1776-1776.	7.3	49
62	Structure of N-linked oligosaccharides attached to chlorovirus PBCV-1 major capsid protein reveals unusual class of complex N-glycans. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13956-13960.	7.1	49
63	Chemical Synthesis of a Complex-Type <i>N</i> -Glycan Containing a Core Fucose. Journal of Organic Chemistry, 2016, 81, 10600-10616.	3.2	49
64	Liquid-state NMR spectroscopy for complex carbohydrate structural analysis: A hitchhiker's guide. Carbohydrate Polymers, 2022, 277, 118885.	10.2	49
65	X-ray structural studies of the entire extracellular region of the serine/threonine kinase PrkC from Staphylococcus aureus. Biochemical Journal, 2011, 435, 33-41.	3.7	48
66	Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from <i>Burkholderia cepacia</i> contribute to defense-associated differential gene expression in <i>Arabidopsis thaliana</i> . Innate Immunity, 2012, 18, 140-154.	2.4	48
67	Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydrate Research, 2003, 338, 277-281.	2.3	47
68	Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Journal of Biological Chemistry, 2015, 290, 21305-21319.	3.4	47
69	Separation of early and late responses to herbivory in Arabidopsis by changing plasmodesmal function. Plant Journal, 2013, 73, 14-25.	5.7	46
70	Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope. Journal of Biological Chemistry, 2015, 290, 21042-21053.	3.4	45
71	The Diversity of the Core Oligosaccharide in Lipopolysaccharides. Sub-Cellular Biochemistry, 2010, 53, 69-99.	2.4	44
72	Capsular Polysaccharide Interferes with Biofilm Formation by <i>Pasteurella multocida</i> Serogroup A. MBio, 2017, 8, .	4.1	44

#	Article	IF	CITATIONS
73	Cancer Immunotherapy of TLR4 Agonist–Antigen Constructs Enhanced with Pathogenâ€Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD‣1. Small, 2019, 15, e1803993.	10.0	44
74	Reflectron MALDI TOF and MALDI TOF/TOF mass spectrometry reveal novel structural details of native lipooligosaccharides. Journal of Mass Spectrometry, 2011, 46, 1135-1142.	1.6	43
75	Cytotoxic 9,10-Dihydrophenanthrenes from Juncus effusus L Tetrahedron, 1993, 49, 3425-3432.	1.9	42
76	<i>PNPLA3</i> 1148M (rs738409) genetic variant and age at onset of atâ€risk alcohol consumption are independent risk factors for alcoholic cirrhosis. Liver International, 2014, 34, 514-520.	3.9	41
77	The antibacterial toxin colicin <scp>N</scp> binds to the inner core of lipopolysaccharide and close to its translocator protein. Molecular Microbiology, 2014, 92, 440-452.	2.5	40
78	Caryose: a carbocyclic monosaccharide from Pseudomonas caryophylli. Carbohydrate Research, 1996, 284, 111-118.	2.3	39
79	Chemical structure of two phytotoxic exopolysaccharides produced by Phomopsis foeniculi11Presented at the 18th International Carbohydrate Symposium, Milan, Italy, 1996 Carbohydrate Research, 1998, 308, 349-357.	2.3	39
80	The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans. Glycobiology, 2010, 20, 594-602.	2.5	39
81	Synthesis of bradyrhizose, a unique inositol-fused monosaccharide relevant to a Nod-factor independent nitrogen fixation. Chemical Communications, 2015, 51, 6964-6967.	4.1	39
82	Review article: can bugs be drugs? The potential of probiotics and prebiotics as treatment for nonâ€alcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 2019, 50, 628-639.	3.7	39
83	Giant DNA Virus Mimivirus Encodes Pathway for Biosynthesis of Unusual Sugar 4-Amino-4,6-dideoxy-d-glucose (Viosamine). Journal of Biological Chemistry, 2012, 287, 3009-3018.	3.4	38
84	A novel lipid A fromHalomonas magadiensis inhibits enteric LPS-induced human monocyte activation. European Journal of Immunology, 2006, 36, 354-360.	2.9	37
85	Comparative Genomics of Early-Diverging Brucella Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway. MBio, 2012, 3, e00246-12.	4.1	37
86	<i>Burkholderia pseudomallei</i> Capsular Polysaccharide Recognition by a Monoclonal Antibody Reveals Key Details toward a Biodefense Vaccine and Diagnostics against Melioidosis. ACS Chemical Biology, 2015, 10, 2295-2302.	3.4	36
87	The structures of glycolipids isolated from the highly thermophilic bacterium Thermus thermophilus Samu-SA1. Glycobiology, 2006, 16, 766-775.	2.5	35
88	N‣inked Glycans of Chloroviruses Sharing a Core Architecture without Precedent. Angewandte Chemie - International Edition, 2016, 55, 654-658.	13.8	35
89	Bifidobacterium bifidum presents on the cell surface a complex mixture of glucans and galactans with different immunological properties. Carbohydrate Polymers, 2019, 218, 269-278.	10.2	35
90	Phenalene metabolites from eichhornia crassipes. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 311-314.	2.2	34

#	Article	IF	CITATIONS
91	Conformational Analysis of a Dermatan Sulfateâ€Derived Tetrasaccharide by NMR, Molecular Modeling, and Residual Dipolar Couplings. ChemBioChem, 2008, 9, 240-252.	2.6	34
92	Structural specificities of cell surface β-glucan polysaccharides determine commensal yeast mediated immuno-modulatory activities. Nature Communications, 2021, 12, 3611.	12.8	34
93	Phytotoxic extracellular polysaccharide fractions from Cryphonectria parasitica (Murr.) Barr strains. Carbohydrate Polymers, 1998, 37, 167-172.	10.2	33
94	Lipopolysaccharides Possessing Twol-Glycero-d-manno-heptopyranosyl-α-(1→5)-3-deoxy-d-manno-oct-2-ulopyranosonic Acid Moieties in the Core Region. Journal of Biological Chemistry, 2002, 277, 10058-10063.	3.4	33
95	Deciphering the structural and biological properties of the lipid A moiety of lipopolysaccharides from Burkholderia cepacia strain ASP B 2D, in Arabidopsis thaliana. Glycobiology, 2011, 21, 184-194.	2.5	33
96	Comparative Genomics of Early-Diverging <i>Brucella</i> Strains Reveals a Novel Lipopolysaccharide Biosynthesis Pathway. MBio, 2012, 3, e00246-11.	4.1	33
97	Three biologically active phenylpropanoid glucosides fromMyriophyllum verticillatum. Phytochemistry, 1992, 31, 109-111.	2.9	32
98	Characterization of liposomes formed by lipopolysaccharides from Burkholderia cenocepacia, Burkholderia multivorans and Agrobacterium tumefaciens: from the molecular structure to the aggregate architecture. Physical Chemistry Chemical Physics, 2010, 12, 13574.	2.8	32
99	Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly. Scientific Reports, 2017, 7, 9715.	3.3	32
100	Structural determination of the phytotoxic mannan exopolysaccharide from Pseudomonas syringae pv. ciccaronei. Carbohydrate Research, 2001, 330, 271-277.	2.3	31
101	Structure Elucidation of the Highly Heterogeneous Lipid A from the Lipopolysaccharide of the Gram-Negative Extremophile BacteriumHalomonas Magadiensis Strain 21 M1. European Journal of Organic Chemistry, 2004, 2004, 2263-2271.	2.4	31
102	Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide. Glycobiology, 2012, 22, 1387-1398.	2.5	31
103	The structure and proinflammatory activity of the lipopolysaccharide fromÂBurkholderiaÂmultivoransÂandÂthe differences between clonal strains colonizingÂpreÂandÂposttransplantedÂlungs. Clycobiology, 2008, 18, 871-881.	2.5	30
104	Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somniduring biofilm formation. BMC Microbiology, 2011, 11, 186.	3.3	30
105	Persistent cystic fibrosis isolate Pseudomonas aeruginosa strain RP73 exhibits an under-acylated LPS structure responsible of its low inflammatory activity. Molecular Immunology, 2015, 63, 166-175.	2.2	30
106	Host–microbiota interaction induces bi-phasic inflammation and glucose intolerance in mice. Molecular Metabolism, 2017, 6, 1371-1380.	6.5	30
107	A bioactive dihydrodibenzoxepin from Juncus effusus. Phytochemistry, 1993, 34, 1182-1184.	2.9	29
108	The Structure of Lipid A of the Lipopolysaccharide from Burkholderia caryophylli with a 4-Amino-4-deoxy-L-arabinopyranose 1-Phosphate Residue Exclusively in Glycosidic Linkage. Chemistry - A European Journal, 2003, 9, 1542-1548.	3.3	29

#	Article	IF	CITATIONS
109	Structure of the chlorovirus PBCV-1 major capsid glycoprotein determined by combining crystallographic and carbohydrate molecular modeling approaches. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E44-E52.	7.1	29
110	The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectinâ€1. Angewandte Chemie - International Edition, 2019, 58, 18697-18702.	13.8	29
111	Full structural characterization of the lipid A components from the Agrobacterium tumefaciens strain C58 lipopolysaccharide fraction. Glycobiology, 2004, 14, 805-815.	2.5	28
112	A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. Journal of Biological Chemistry, 2019, 294, 13248-13268.	3.4	27
113	A novel type of highly negatively charged lipooligosaccharide from Pseudomonas stutzeri OX1 possessing two 4,6-O-(1-carboxy)-ethylidene residues in the outer core region. FEBS Journal, 2004, 271, 2691-2704.	0.2	26
114	The Structures of Lipopolysaccharides from Plantâ€Associated Gramâ€Negative Bacteria. European Journal of Organic Chemistry, 2009, 2009, 5887-5896.	2.4	26
115	Neutrophil elastase-mediated increase in airway temperature during inflammation. Journal of Cystic Fibrosis, 2014, 13, 623-631.	0.7	26
116	The structure of the lipooligosaccharide from Xanthomonas oryzae pv. Oryzae: the causal agent of the bacterial leaf blight in rice. Carbohydrate Research, 2016, 427, 38-43.	2.3	26
117	Gramâ€Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European Journal of Organic Chemistry, 2017, 2017, 4055-4073.	2.4	26
118	The Lipidâ€A fromRhodopseudomonas palustrisStrain BisA53 LPS Possesses a Unique Structure and Low Immunostimulant Properties. Chemistry - A European Journal, 2017, 23, 3637-3647.	3.3	26
119	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> : Complete Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie - International Edition, 2021, 60, 10023-10031.	13.8	26
120	Full Structural Characterisation of the Lipooligosaccharide of aBurkholderiapyrrocinia Clinical Isolate. European Journal of Organic Chemistry, 2006, 2006, 4874-4883.	2.4	25
121	Detailed characterization of the lipid A fraction from the nonpathogen Acinetobacter radioresistens strain S13. Journal of Lipid Research, 2007, 48, 1045-1051.	4.2	25
122	NMR Spectroscopic Analysis Reveals Extensive Binding Interactions of Complex Xyloglucan Oligosaccharides with the <i>Cellvibrio japonicus</i> Glycoside Hydrolase Family 31 ݱâ€Xylosidase. Chemistry - A European Journal, 2012, 18, 13395-13404.	3.3	25
123	Structural features and immunological perception of the cell surface glycans of Lactobacillus plantarum: a novel rhamnose-rich polysaccharide and teichoic acids. Carbohydrate Polymers, 2020, 233, 115857.	10.2	25
124	Lipopolysaccharides. , 2010, , 133-153.		25
125	Improvement of nutritional status in malnourished cirrhotic patients one year after liver transplantation. European E-journal of Clinical Nutrition and Metabolism, 2011, 6, e142-e147.	0.4	24
126	A Unique Bicyclic Monosaccharide from the <i>Bradyrhizobium</i> Lipopolysaccharide and Its Role in the Molecular Interaction with Plants. Angewandte Chemie - International Edition, 2011, 50, 12610-12612.	13.8	24

#	Article	IF	CITATIONS
127	Chemistry and Biology of the Potent Endotoxin from a <i>Burkholderia dolosa</i> Clinical Isolate from a Cystic Fibrosis Patient. ChemBioChem, 2013, 14, 1105-1115.	2.6	24
128	Giant Virus Megavirus chilensis Encodes the Biosynthetic Pathway for Uncommon Acetamido Sugars. Journal of Biological Chemistry, 2014, 289, 24428-24439.	3.4	24
129	The lipopolysaccharide core oligosaccharide of Burkholderia plays a critical role in maintaining a proper gut symbiosis with the bean bug Riptortus pedestris. Journal of Biological Chemistry, 2017, 292, 19226-19237.	3.4	24
130	Carbohydrate-based adjuvants. Drug Discovery Today: Technologies, 2020, 35-36, 57-68.	4.0	24
131	Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10. IScience, 2020, 23, 101231.	4.1	24
132	(20S)-4α-methyl-24-methylenecholest-7-en-3β-ol, an allelopathic sterol from Typha latifoliaâ~†. Phytochemistry, 1990, 29, 1797-1798.	2.9	23
133	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie - International Edition, 2017, 56, 2092-2096.	13.8	22
134	The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydrate Research, 2004, 339, 1985-1993.	2.3	21
135	Structural characterizations of lipids A by MS/MS of doubly charged ions on a hybrid linear ion trap/orbitrap mass spectrometer. Journal of Mass Spectrometry, 2008, 43, 478-484.	1.6	21
136	Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support. Bioprocess and Biosystems Engineering, 2015, 38, 631-638.	3.4	21
137	Structural determination of lipid A of the lipopolysaccharide from Pseudomonas reactans. FEBS Journal, 2002, 269, 2498-2505.	0.2	20
138	Complete Structural Elucidation of a Novel Lipooligosaccharide from the Outer Membrane of the Marine BacteriumShewanella pacifica. European Journal of Organic Chemistry, 2005, 2005, 2281-2291.	2.4	20
139	Structural elucidation of the core-lipid A backbone from the lipopolysaccharide of Acinetobacter radioresistens S13, an organic solvent tolerant Gram-negative bacterium. Carbohydrate Research, 2006, 341, 582-590.	2.3	20
140	Transcriptional responses of Burkholderia cenocepacia to polymyxin B in isogenic strains with diverse polymyxin B resistance phenotypes. BMC Genomics, 2011, 12, 472.	2.8	20
141	Thermophiles as Potential Source of Novel Endotoxin Antagonists: the Full Structure and Bioactivity of theLipoâ€oligosaccharide from <i>Thermomonas hydrothermalis</i> . ChemBioChem, 2014, 15, 2146-2155.	2.6	20
142	Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. , 2022, 230, 107970.		20
143	NMR and MS evidences for a random assembled O-specific chain structure in the LPS of the bacterium Xanthomonas campestris pv. Vitians. FEBS Journal, 2002, 269, 4185-4193.	0.2	19
144	Structural characterization of the carbohydrate backbone of the lipooligosaccharide of the marine bacterium Arenibacter certesii strain KMM 3941T. Carbohydrate Research, 2005, 340, 2540-2549.	2.3	19

#	Article	IF	CITATIONS
145	Full structural characterization of Shigella flexneri M90T serotype 5 wild-type R-LPS and its ÂgalU mutant: glycine residue location in the inner core of the lipopolysaccharide. Glycobiology, 2007, 18, 260-269.	2.5	19
146	Structural Study and Conformational Behavior of the Two Different Lipopolysaccharide Oâ€Antigens Produced by the Cystic Fibrosis Pathogen <i>Burkholderia multivorans</i> . Chemistry - A European Journal, 2009, 15, 7156-7166.	3.3	19
147	Different sugar residues of the lipopolysaccharide outer core are required for early interactions of Salmonella enterica serovars Typhi and Typhimurium with epithelial cells. Microbial Pathogenesis, 2011, 50, 70-80.	2.9	19
148	Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy. International Journal of Biological Macromolecules, 2017, 103, 744-750.	7.5	19
149	Structure of O-Antigen and Hybrid Biosynthetic Locus in Burkholderia cenocepacia Clonal Variants Recovered from a Cystic Fibrosis Patient. Frontiers in Microbiology, 2017, 8, 1027.	3.5	19
150	Analysis of Synthetic Monodisperse Polysaccharides by Wide Mass Range Ultrahigh-Resolution MALDI Mass Spectrometry. Analytical Chemistry, 2021, 93, 4666-4675.	6.5	19
151	Investigation of protein-ligand complexes by ligand-based NMR methods. Carbohydrate Research, 2021, 503, 108313.	2.3	19
152	Structural basis for Glycan-receptor binding by mumps virus hemagglutinin-neuraminidase. Scientific Reports, 2020, 10, 1589.	3.3	19
153	Mesoscopic and microstructural characterization of liposomes formed by the lipooligosaccharide from Salmonella minnesota strain 595 (Re mutant). Physical Chemistry Chemical Physics, 2009, 11, 2314.	2.8	18
154	The O-specific polysaccharide structure and gene cluster of serotype O:12 of the Yersinia pseudotuberculosis complex, and the identification of a novel L-quinovose biosynthesis gene. Glycobiology, 2013, 23, 346-353.	2.5	18
155	Structure, Genetics and Function of an Exopolysaccharide Produced by a Bacterium Living within Fungal Hyphae. ChemBioChem, 2015, 16, 387-392.	2.6	18
156	The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS. Marine Drugs, 2017, 15, 201.	4.6	18
157	Solid State NMR Studies of Intact Lipopolysaccharide Endotoxin. ACS Chemical Biology, 2018, 13, 2106-2113.	3.4	18
158	Structure and inflammatory activity of the LPS isolated from Acetobacter pasteurianus CIP103108. International Journal of Biological Macromolecules, 2018, 119, 1027-1035.	7.5	18
159	Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis. Scientific Reports, 2020, 10, 7626.	3.3	18
160	Acetyl Substitution of the O-Specific Caryan from the Lipopolysaccharide ofPseudomonas (Burkholderia) caryophylli Leads to a Block Pattern. Angewandte Chemie - International Edition, 2000, 39, 156-160.	13.8	17
161	Structural Determination of the O-Specific Chain of the Lipopolysaccharide Fraction from the Alkaliphilic Bacterium Halomonas magadii Strain 21 MI. European Journal of Organic Chemistry, 2003, 2003, 1029-1034.	2.4	17
162	The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydrate Research, 2006, 341, 2456-2461.	2.3	17

#	Article	IF	CITATIONS
163	Characterization of the specific O-polysaccharide structure and biosynthetic gene cluster of Yersinia pseudotuberculosis serotype O:15. Innate Immunity, 2009, 15, 351-359.	2.4	17
164	The O-specific polysaccharide structure and biosynthetic gene cluster of Yersinia pseudotuberculosis serotype O:11. Carbohydrate Research, 2009, 344, 1533-1540.	2.3	17
165	Bacterial Lipopolysaccharides in Plant and Mammalian Innate Immunity. Protein and Peptide Letters, 2012, 19, 1040-1044.	0.9	17
166	The Very Long Chain Fatty Acid (C26:25OH) Linked to the Lipid A Is Important for the Fitness of the Photosynthetic Bradyrhizobium Strain ORS278 and the Establishment of a Successful Symbiosis with Aeschynomene Legumes. Frontiers in Microbiology, 2017, 8, 1821.	3.5	17
167	Zymomonas mobilis exopolysaccharide structure and role in high ethanol tolerance. Carbohydrate Polymers, 2018, 201, 293-299.	10.2	17
168	Acylglycosyl sterols from Pistia stratiotes. Phytochemistry, 1991, 30, 2422-2424.	2.9	16
169	Structural determination of the O-chain polysaccharide from Agrobacterium tumefaciens , strain DSM 30205. FEBS Journal, 2002, 269, 2885-2888.	0.2	16
170	O-Specific chain structure from the lipopolysaccharide fraction of Pseudomonas reactans: a pathogen of the cultivated mushrooms. Carbohydrate Research, 2002, 337, 467-471.	2.3	16
171	The O-specific chain structure of the major component from the lipopolysaccharide fraction of Halomonas magadii strain 21 MI (NCIMB 13595). Carbohydrate Research, 2003, 338, 567-570.	2.3	16
172	Structural Analysis of the Deep Rough Lipopolysaccharide from Gram Negative BacteriumAlteromonas macleodii ATCC 27126T: The First Finding of β-Kdo in the Inner Core of Lipopolysaccharides. European Journal of Organic Chemistry, 2006, 2006, 4710-4716.	2.4	16
173	The O-specific polysaccharide structure from the lipopolysaccharide of the Gram-negative bacterium Raoultella terrigena. Carbohydrate Research, 2007, 342, 1514-1518.	2.3	16
174	First structural characterization of Burkholderia vietnamiensis lipooligosaccharide from cystic fibrosis-associated lung transplantation strains. Glycobiology, 2009, 19, 1214-1223.	2.5	16
175	Synthesis of a β-GlcN-(1→4)-MurNAc building block en route to N-deacetylated peptidoglycan fragments. Tetrahedron Letters, 2010, 51, 1117-1120.	1.4	16
176	The lipid A of Burkholderia multivorans C1576 smooth-type lipopolysaccharide and its pro-inflammatory activity in a cystic fibrosis airways model. Innate Immunity, 2010, 16, 354-365.	2.4	16
177	Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus. Marine Drugs, 2015, 13, 6472-6488.	4.6	16
178	Convergent Synthesis of a Bisecting <i>N</i> â€Acetylglucosamine (GlcNAc) ontaining N lycan. Chemistry - an Asian Journal, 2018, 13, 1544-1551.	3.3	16
179	Role of a fluid-phase PRR in fighting an intracellular pathogen: PTX3 in Shigella infection. PLoS Pathogens, 2018, 14, e1007469.	4.7	16
180	Characterisation of the Dynamic Interactions between Complex <i>N</i> â€Glycans and Human CD22. ChemBioChem, 2020, 21, 129-140.	2.6	16

#	Article	IF	CITATIONS
181	Bile acid metabolism and FXR-mediated effects in human cholestatic liver disorders. Biochemical Society Transactions, 2022, 50, 361-373.	3.4	16
182	Dimeric phenalene metabolites from Eichhornia crassipes. Tetrahedron, 1992, 48, 3971-3976.	1.9	15
183	Hydroperoxysterols in <i>Arum italicum</i> . Natural Product Research, 1994, 5, 7-14.	0.4	15
184	Structural Determination of the O-Specific Chain of the Lipopolysaccharide fromPseudomonas cichorii. European Journal of Organic Chemistry, 2002, 2002, 1770-1775.	2.4	15
185	Structural elucidation of a novel core oligosaccharide backbone of the lipopolysaccharide from the new bacterial species Agrobacterium larrymoorei. Carbohydrate Research, 2003, 338, 2721-2730.	2.3	15
186	The structure of the phosphorylated carbohydrate backbone of the lipopolysaccharide of the phytopathogen bacterium Pseudomonas tolaasii. Carbohydrate Research, 2004, 339, 2241-2248.	2.3	15
187	The O-chain structure from the LPS of the endophytic bacterium Burkholderia cepacia strain ASP B 2D. Carbohydrate Research, 2006, 341, 2954-2958.	2.3	15
188	Full Structural Characterization of an Extracellular Polysaccharide Produced by the Freshwater Cyanobacterium <i>Oscillatoria planktothrix</i> FP1. European Journal of Organic Chemistry, 2010, 2010, 5594-5600.	2.4	15
189	Lipid A Structure. , 2011, , 1-20.		15
190	Plasma fatty acid lipidome is associated with cirrhosis prognosis and graft damage in liver transplantation. American Journal of Clinical Nutrition, 2014, 100, 600-608.	4.7	15
191	Lipopolysaccharides as Microbe-associated Molecular Patterns: A Structural Perspective. RSC Drug Discovery Series, 2015, , 38-63.	0.3	15
192	The N-glycan structures of the antigenic variants of chlorovirus PBCV-1 major capsid protein help to identify the virus-encoded glycosyltransferases. Journal of Biological Chemistry, 2019, 294, 5688-5699.	3.4	15
193	Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics, 2021, 13, 501.	4.5	15
194	Two New Lignan Glucosides from Arum italicum. Heterocycles, 1993, 36, 2081.	0.7	14
195	Structure elucidation of the O-chain from the major lipopolysaccharide of the Xanthomonas campestris strain 642. Carbohydrate Research, 2000, 325, 222-229.	2.3	14
196	Solvent Effect on the Isomeric Equilibrium of Carbohydrates:  The Superior Ability of 2,2,2-Trifluoroethanol for Intramolecular Hydrogen Bond Stabilization. Journal of the American Chemical Society, 2001, 123, 12605-12610.	13.7	14
197	Determination of the Structure of the Lipid A Fraction from the Lipopolysaccharide of Pseudomonas Cichorii by Means of NMR and MALDI-TOF Mass Spectrometry. European Journal of Organic Chemistry, 2002, 2002, 3119-3125.	2.4	14
198	The O-chain structure from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora-type strain IAM 12662T. Carbohydrate Research, 2005, 340, 2693-2697.	2.3	14

#	ARTICLE	IF	CITATIONS
199	The genetics and structure of the O-specific polysaccharide of Yersinia pseudotuberculosis serotype O:10 and its relationship with Escherichia coli O111 and Salmonella enterica O35. Glycobiology, 2011, 21, 1131-1139.	2.5	14
200	A Convergent Route to Enantiomers of the Bicyclic Monosaccharide Bradyrhizose Leads to Insight into the Bioactivity of an Immunologically Silent Lipopolysaccharide. Journal of Organic Chemistry, 2019, 84, 14-41.	3.2	14
201	Immunostimulant (1→3)-d-glucans from the cell wall of Cryphonectria parasitica (Murr.) Barr strain 263. Carbohydrate Research, 2000, 329, 441-445.	2.3	13
202	Structural determination of the O-specific chain of the lipopolysaccharide from the mushrooms pathogenic bacterium Pseudomonas tolaasii. Carbohydrate Research, 2003, 338, 1251-1257.	2.3	13
203	The structure of the O-polysaccharide from Pseudomonas stutzeri OX1 containing two different 4-acylamido-4,6-dideoxy-residues, tomosamine and perosamine. Carbohydrate Research, 2005, 340, 651-656.	2.3	13
204	The complete structure of the core carbohydrate backbone from the LPS of marine halophilic bacterium Pseudoalteromonas carrageenovora type strain IAM 12662T. Carbohydrate Research, 2005, 340, 1475-1482.	2.3	13
205	The structure of the O-specific polysaccharide from the lipopolysaccharide of Burkholderia anthina. Carbohydrate Research, 2009, 344, 1697-1700.	2.3	13
206	An Unusual Galactofuranose Lipopolysaccharide That Ensures the Intracellular Survival of Toxinâ€Producing Bacteria in Their Fungal Host. Angewandte Chemie, 2010, 122, 7638-7642.	2.0	13
207	Genetic characterisation and structural analysis of the O-specific polysaccharide of <i>Yersinia pseudotuberculosis</i> serotype O:1c. Innate Immunity, 2011, 17, 183-190.	2.4	13
208	Structural characterization of two lipopolysaccharide O-antigens produced by the endofungal bacterium Burkholderia sp. HKI-402 (B4). Carbohydrate Research, 2012, 347, 95-98.	2.3	13
209	Structural and conformational study of the O-polysaccharide produced by the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris strain BisA53. Carbohydrate Polymers, 2014, 114, 384-391.	10.2	13
210	Structure of the Lipopolysaccharide from the <i>Bradyrhizobium</i> sp. ORS285 <i>rfaL</i> Mutant Strain. ChemistryOpen, 2017, 6, 541-553.	1.9	13
211	A two gene-based risk score predicts alcoholic cirrhosis development in males with at-risk alcohol consumption. The Application of Clinical Genetics, 2019, Volume 12, 1-10.	3.0	13
212	Hepatic expression of lipopolysaccharide-binding protein (Lbp) is induced by the gut microbiota through Myd88 and impairs glucose tolerance in mice independent of obesity. Molecular Metabolism, 2020, 37, 100997.	6.5	13
213	Isolation and characterisation of the lipopolysaccharide fromXanthomonas hortorumpv.vitians. FEMS Microbiology Letters, 1999, 181, 49-53.	1.8	12
214	The Structures of the Lipid A Moieties from the Lipopolysaccharides of Two Phytopathogenic Bacteria,Xanthomonas campestris pv.pruni andXanthomonas fragariae. European Journal of Organic Chemistry, 2004, 2004, 1336-1343.	2.4	12
215	Structural Analysis of a Novel Polysaccharide of the Lipopolysaccharide-Deficient Extremophile Gram-Negative BacteriumThermus thermophilus HB8. European Journal of Organic Chemistry, 2004, 2004, 5047-5054.	2.4	12
216	The Outer Membrane of the Marine Gram-Negative BacteriumAlteromonas addita is Composed of a Very Short-Chain Lipopolysaccharide with a High Negative Charge Density. European Journal of Organic Chemistry, 2007, 2007, 1113-1122.	2.4	12

#	Article	IF	CITATIONS
217	Structural elucidation of the capsular polysaccharide isolated from Kaistella flava. Carbohydrate Research, 2008, 343, 2401-2405.	2.3	12
218	Structural investigation of the lipopolysaccharide O-chain isolated from Burkholderia fungorum strain DSM 17061. Carbohydrate Research, 2016, 433, 31-35.	2.3	12
219	<i>Xanthomonas citri</i> pv. <i>citri</i> Pathotypes: LPS Structure and Function as Microbeâ€Associated Molecular Patterns. ChemBioChem, 2017, 18, 772-781.	2.6	12
220	A Comprehensive Study of the Interaction between Peptidoglycan Fragments and the Extracellular Domain of <i>Mycobacterium tuberculosis</i> Ser/Thr Kinase PknB. ChemBioChem, 2017, 18, 2094-2098.	2.6	12
221	Why Doesn't Primary Biliary Cholangitis Respond to Immunosuppressive Medications?. Current Hepatology Reports, 2017, 16, 119-123.	0.9	12
222	Chlorovirus PBCV-1 protein A064R has three of the transferase activities necessary to synthesize its capsid protein N-linked glycans. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28735-28742.	7.1	12
223	Acetyl substitution of the O-specific polysaccharide caryophyllan from the phenol phase of Pseudomonas (Burkholderia) caryophylli. Carbohydrate Research, 2001, 335, 205-211.	2.3	11
224	Core oligosaccharide structure from the highly phytopathogenic Agrobacterium tumefaciens TT111 and conformational analysis of the putative rhamnan epitope. Glycobiology, 2006, 16, 1272-1280.	2.5	11
225	The structure of the carbohydrate backbone of the lipooligosaccharide from the halophilic bacterium Arcobacter halophilus. Carbohydrate Research, 2010, 345, 850-853.	2.3	11
226	Against the rules: A marine bacterium, Loktanella rosea, possesses a unique lipopolysaccharide. Glycobiology, 2010, 20, 586-593.	2.5	11
227	The structural elucidation of the Salmonella enterica subsp. enterica, reveals that it contains both O-factors 4 and 5 on the LPS antigen. Carbohydrate Research, 2013, 370, 9-12.	2.3	11
228	<i>Prevotella denticola</i> Lipopolysaccharide from a Cystic Fibrosis Isolate Possesses a Unique Chemical Structure. European Journal of Organic Chemistry, 2016, 2016, 1732-1738.	2.4	11
229	Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. Journal of Biological Chemistry, 2020, 295, 10969-10987.	3.4	11
230	Expanding the Occurrence of Polysaccharides to the Viral World: The Case of Mimivirus. Angewandte Chemie - International Edition, 2021, 60, 19897-19904.	13.8	11
231	9,10-Dihydrophenanthrene Glucosides from <i>Juncus effusus</i> . Natural Product Research, 1995, 6, 111-117.	0.4	10
232	Transition metals and carbohydrates: the methyl-4,6-O-benzylidene-2,3-diazo-2,3-dideoxy-α-d-mannopyranoside skeleton as building block for new chiral nitrogen chelates. Carbohydrate Research, 2001, 331, 209-212.	2.3	10
233	The linkage between O-specific caryan and core region in the lipopolysaccharide of Burkholderia caryophylli is furnished by a primer monosaccharide. Carbohydrate Research, 2005, 340, 1802-1807.	2.3	10
234	The Structure of the O hain Polysaccharide from the Gramâ€Negative Endophytic Bacterium <i>Burkholderia phytofirmans</i> Strain PsJN. European Journal of Organic Chemistry, 2008, 2008, 2303-2308.	2.4	10

#	Article	IF	CITATIONS
235	The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange II. Carbohydrate Research, 2008, 343, 674-684.	2.3	10
236	Differential vascular endothelial growth factor A protein expression between small hepatocellular carcinoma and cirrhosis correlates with serum vascular endothelial growth factor A and αâ€fetoprotein. Liver International, 2009, 29, 103-112.	3.9	10
237	Recipient Interleukin-28B Rs12979860 C/T Polymorphism and Acute Cellular Rejection After Liver Transplantation. Transplantation, 2012, 93, 1038-1044.	1.0	10
238	D-Lactic acidosis 25 years after bariatric surgery due to Salmonella enteritidis. Nutrition, 2012, 28, 108-111.	2.4	10
239	Structural identification of the O-antigen fraction from the lipopolysaccharide of the Burkholderia ambifaria strain 19182. Carbohydrate Research, 2013, 379, 95-99.	2.3	10
240	Vibrio vulnificus MO6-24/O Lipopolysaccharide Stimulates Superoxide Anion, Thromboxane B2, Matrix Metalloproteinase-9, Cytokine and Chemokine Release by Rat Brain Microglia in Vitro. Marine Drugs, 2014, 12, 1732-1756.	4.6	10
241	Solving the structural puzzle of bacterial glycome. Current Opinion in Structural Biology, 2021, 68, 74-83.	5.7	10
242	Chiral induction based on carbohydrate ligands in olefin platinum(0) complexes. Carbohydrate Research, 2002, 337, 651-656.	2.3	9
243	Structural Determination of a Novel O-Chain Polysaccharide of the Lipopolysaccharide from the Bacterium Xanthomonas campestris pv. pruni. European Journal of Organic Chemistry, 2003, 2003, 2254-2259.	2.4	9
244	Absolute Configuration of 8-Amino-3,8-dideoxyoct-2-ulosonic Acid, the Chemical Hallmark of Lipopolysaccharides of the GenusShewanella§. Journal of Natural Products, 2007, 70, 1624-1627.	3.0	9
245	Core region and lipid A components of lipopolysaccharides. , 2010, , 29-55.		9
246	Occurrence and structure of cyclic Enterobacterial Common Antigen in Escherichia coli O157:Hâ". Carbohydrate Research, 2012, 363, 29-32.	2.3	9
247	Innate immunity probed by lipopolysaccharides affinity strategy and proteomics. Analytical and Bioanalytical Chemistry, 2013, 405, 775-784.	3.7	9
248	Lipid A Structure and Immunoinhibitory Effect of the Marine Bacterium <i>Cobetia pacifica</i> KMM 3879 ^T . European Journal of Organic Chemistry, 2018, 2018, 2707-2716.	2.4	9
249	The Structure of the Lipid A from the Halophilic Bacterium Spiribacter salinus M19-40T. Marine Drugs, 2018, 16, 124.	4.6	9
250	Synthesis of Forsythenethoside A, a Neuroprotective Macrocyclic Phenylethanoid Glycoside, and NMR Analysis of Conformers. Journal of Organic Chemistry, 2019, 84, 13733-13743.	3.2	9
251	Donor Small-Droplet Macrovesicular Steatosis Affects Liver Transplant Outcome in HCV-Negative Recipients. Canadian Journal of Gastroenterology and Hepatology, 2019, 2019, 1-13.	1.9	9
252	Lipopolysaccharide O-antigen molecular and supramolecular modifications of plant root microbiota are pivotal for host recognition. Carbohydrate Polymers, 2022, 277, 118839.	10.2	9

#	Article	IF	CITATIONS
253	Presence of β-glycosyl linkages in caryophyllan: the main polysaccharide from the Pseudomonas caryophylli LPS fraction. Carbohydrate Research, 1998, 307, 167-172.	2.3	8
254	The structure of the carbohydrate backbone of the lipooligosaccharide from an alkaliphilic Halomonas sp Carbohydrate Research, 2010, 345, 1971-1975.	2.3	8
255	Structure of the lipopolysaccharide isolated from the novel species Uruburuella suis. Carbohydrate Research, 2012, 357, 75-82.	2.3	8
256	Structural Study of the Lipopolysaccharide Oâ€Antigen Produced by the Emerging Cystic Fibrosis Pathogen <i>Pandoraea pulmonicola</i> . European Journal of Organic Chemistry, 2012, 2012, 2243-2249.	2.4	8
257	Unraveling the Interaction between the LPS Oâ€Antigen of <i>Burkholderia anthina</i> and the 5D8 Monoclonal Antibody by Using a Multidisciplinary Chemical Approach, with Synthesis, NMR, and Molecular Modeling Methods. ChemBioChem, 2013, 14, 1485-1493.	2.6	8
258	Synthesis of Partially N-Acetylated Chitooligosaccharides and Muropeptides. Synlett, 2014, 25, 365-370.	1.8	8
259	Elucidation of the structure of the oligosaccharide from wild type Moraxella bovis Epp63 lipooligosaccharide. Carbohydrate Research, 2014, 388, 81-86.	2.3	8
260	Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. IScience, 2021, 24, 101998.	4.1	8
261	O-specific polysaccharide structure of the aqueous lipopolysaccharide fraction from Xanthomonas campestris pv. vitians strain 1839. Carbohydrate Research, 2000, 328, 435-439.	2.3	7
262	Structural Determination of theO-Specific Polysaccharide from theXanthomonas fragariaeLipopolysaccharide Fraction. European Journal of Organic Chemistry, 2001, 2001, 927-931.	2.4	7
263	Structure of minor oligosaccharides from the lipopolysaccharide fraction from Pseudomonas stutzeri OX1. Carbohydrate Research, 2004, 339, 2657-2665.	2.3	7
264	An antagonist of lipid A action in mammals has complex effects on lipid A induction of defence responses in the model plant Arabidopsis thaliana. Microbes and Infection, 2008, 10, 571-574.	1.9	7
265	Structural Elucidation of a Novel <i>B. cenocepacia</i> ETâ€12 Lipooligosaccharide Isolated from a Cystic Fibrosis Patient after Lung Transplantation. European Journal of Organic Chemistry, 2010, 2010, 1299-1306.	2.4	7
266	The properties of chitosan complexes with smooth and rough forms of lipopolysaccharides on CHO-K1 cells. Carbohydrate Polymers, 2013, 97, 284-292.	10.2	7
267	Synthesis of the tetrasaccharide outer core fragment of Burkholderia multivorans lipooligosaccharide. Carbohydrate Research, 2015, 403, 182-191.	2.3	7
268	The 35-year odyssey of beta blockers in cirrhosis: any gender difference in sight?. Pharmacological Research, 2017, 119, 20-26.	7.1	7
269	Structure of the Oâ€Antigen and the Lipidâ€A from the Lipopolysaccharide of <i>Fusobacterium nucleatum</i> ATCC 51191. ChemBioChem, 2021, 22, 1252-1260.	2.6	7
270	Giant viruses of the <i>Megavirinae</i> subfamily possess biosynthetic pathways to produce rare bacterial-like sugars in a clade-specific manner. MicroLife, 2022, 3, .	2.1	7

#	Article	IF	CITATIONS
271	A Novel Core Region, Lacking Heptose and Phosphate, of the Lipopolysaccharide from the Gram-Negative BacteriumPseudomonascichorii (Pseudomonadaceae RNA Group 1). European Journal of Organic Chemistry, 2004, 2004, 2427-2435.	2.4	6
272	Lipopolysaccharide structure and biological activity from the cystic fibrosis pathogens Burkholderia cepacia complex. Carbohydrate Chemistry, 2012, , 13-39.	0.3	6
273	Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. Journal of Microbiology, 2019, 57, 498-508.	2.8	6
274	The Structure of the Lipid A of Gram-Negative Cold-Adapted Bacteria Isolated from Antarctic Environments. Marine Drugs, 2020, 18, 592.	4.6	6
275	Biopolymer Skeleton Produced by <i>Rhizobium radiobacter</i> : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide Oâ€Antigen. Angewandte Chemie - International Edition, 2020, 59, 6368-6374.	13.8	6
276	Covalently bonded hopanoid-Lipid A from Bradyrhizobium: The role of unusual molecular structure and calcium ions in regulating the lipid bilayers organization. Journal of Colloid and Interface Science, 2021, 594, 891-901.	9.4	6
277	Chemical Synthesis of Sialyl <i>N</i> â€Glycans and Analysis of Their Recognition by Neuraminidase. Angewandte Chemie - International Edition, 2021, 60, 24686-24693.	13.8	6
278	Molecular recognition of sialoglycans by streptococcal Siglec-like adhesins: toward the shape of specific inhibitors. RSC Chemical Biology, 2021, 2, 1618-1630.	4.1	6
279	The Astounding World of Glycans from Giant Viruses. Chemical Reviews, 2022, 122, 15717-15766.	47.7	6
280	Efficient synthesis of O-antigen fragments expressed by Burkholderia anthina by modular synthesis approach. Carbohydrate Research, 2015, 404, 98-107.	2.3	5
281	Determination of the structure of the O-antigen and the lipid A from the entomopathogenic bacterium Pseudomonas entomophila lipopolysaccharide along with its immunological properties. Carbohydrate Research, 2015, 412, 20-27.	2.3	5
282	The LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes. PLoS ONE, 2016, 11, e0148884.	2.5	5
283	NMR analysis of the binding mode of two fungal endo-l²-1,4-mannanases from GH5 and GH26 families. Organic and Biomolecular Chemistry, 2016, 14, 314-322.	2.8	5
284	A chronic strain of the cystic fibrosis pathogen Pandoraea pulmonicola expresses a heterogenous hypo-acylated lipid A. Glycoconjugate Journal, 2021, 38, 135-144.	2.7	5
285	The Propensity of the Human Liver to Form Large Lipid Droplets Is Associated with PNPLA3 Polymorphism, Reduced INSIG1 and NPC1L1 Expression and Increased Fibrogenetic Capacity. International Journal of Molecular Sciences, 2021, 22, 6100.	4.1	5
286	The Unusual Lipid A Structure and Immunoinhibitory Activity of LPS from Marine Bacteria Echinicola pacifica KMM 6172T and Echinicola vietnamensis KMM 6221T. Microorganisms, 2021, 9, 2552.	3.6	5
287	Structural analysis of a novel putative capsular polysaccharide from Pseudomonas (Burkholderia) caryophylli strain 2151. FEBS Journal, 2001, 259, 887-891.	0.2	4
288	In vitroallelopathic properties of wild rocket (Diplotaxis tenuifoliaDC) extract and of its potential allelochemicalS-glucopyranosyl thiohydroximate. Journal of Plant Interactions, 2005, 1, 51-60.	2.1	4

#	Article	IF	CITATIONS
289	Structural Study of Binding of αâ€Mannosides to Mannanâ€Binding Lectins. European Journal of Organic Chemistry, 2012, 2012, 5275-5281.	2.4	4
290	Recipient perioperative cholesterolaemia and graft cholesterol metabolism gene expression predict liver transplant outcome. Liver International, 2014, 34, e290-301.	3.9	4
291	Bacterial Lipopolysaccharides: An Overview of Their Structure, Biosynthesis and Immunological Activity. , 2015, , 57-89.		4
292	Multivalent ligand mimetics of LecA from P. aeruginosa: synthesis and NMR studies. Carbohydrate Research, 2016, 429, 23-28.	2.3	4
293	Serotype O:8 isolates in the Yersinia pseudotuberculosis complex have different O-antigen gene clusters and produce various forms of rough LPS. Innate Immunity, 2016, 22, 205-217.	2.4	4
294	Synthesis of Bradyrhizose Oligosaccharides Relevant to the <i>Bradyrhizobium</i> Oâ€Antigen. Angewandte Chemie, 2017, 129, 2124-2128.	2.0	4
295	Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding. Molecular Metabolism, 2019, 23, 82-87.	6.5	4
296	Overexpression of lpxT Gene in Escherichia coli Inhibits Cell Division and Causes Envelope Defects without Changing the Overall Phosphorylation Level of Lipid A. Microorganisms, 2020, 8, 826.	3.6	4
297	Propranolol-induced hallucinations mimicking encephalopathy in a patient with liver cirrhosis. Scandinavian Journal of Gastroenterology, 2021, 56, 829-831.	1.5	4
298	The structures of the cell wall teichoic acids from the thermophilic microorganism Geobacillus thermoleovorans strain Fango. Carbohydrate Research, 2006, 341, 2613-2618.	2.3	3
299	The O-chain structure from the LPS of the bacterium Naxibacter alkalitolerans YIM 31775T. Carbohydrate Research, 2007, 342, 757-761.	2.3	3
300	<i>Rhizobium rubi</i> ^T : A Gramâ€Negative Phytopathogenic Bacterium Expressing the Lewis B Epitope on the Outer Core of its Lipooligosaccharide Fraction. ChemBioChem, 2008, 9, 1830-1835.	2.6	3
301	Structure and Immunological Activity of the Lipopolysaccharide Isolated from the Species <i>Alkalimonas delamerensis</i> . European Journal of Organic Chemistry, 2013, 2013, 2653-2665.	2.4	3
302	Synthesis and biological evaluation of 5′-glycyl derivatives of uridine as inhibitors of 1,4-β-galactosyltransferase. Bioorganic Chemistry, 2015, 58, 18-25.	4.1	3
303	Structural and Conformational Study of the Oâ€Antigenic Portion of the Lipopolysaccharide Isolated from <i>Burkholderia gladioli</i> pv. <i>cocovenenans</i> . European Journal of Organic Chemistry, 2016, 2016, 748-755.	2.4	3
304	<i>Rhodopseudomonas palustris</i> Strain CGA009 Produces an O-Antigen Built up by a C-4-Branched Monosaccharide: Structural and Conformational Studies. Organic Letters, 2018, 20, 3656-3660.	4.6	3
305	The Lipidâ€A Structure from the Marine Sponge Symbiont <i>Endozoicomonas</i> sp. HEX 311. ChemBioChem, 2019, 20, 230-236.	2.6	3
306	Biopolymer Skeleton Produced by Rhizobium radiobacter : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide Oâ€Antigen. Angewandte Chemie, 2020, 132, 6430-6436.	2.0	3

#	Article	IF	CITATIONS
307	Structural characterisation of the oligosaccharide from Moraxella bovoculi type strain 237 (ATCC) Tj ETQq1 1 0.	784314 rg 2.3	gBT ₃ /Overloc
308	Conformationally Constrained Sialyl Analogues as New Potential Binders of h D22. ChemBioChem, 2022, 23, .	2.6	3
309	The Proteomic Signature of Intestinal Acute Rejection in the Mouse. Metabolites, 2022, 12, 23.	2.9	3
310	Role of EPS in mitigation of plant abiotic stress: The case of Methylobacterium extorquens PA1. Carbohydrate Polymers, 2022, 295, 119863.	10.2	3
311	Applicability of the Mosher MPTA-Ester Methodology to Monosaccharides. Journal of Carbohydrate Chemistry, 1998, 17, 987-992.	1.1	2
312	Expression, Purification, Crystallization and Preliminary X-Ray Crystallographic Analysis of the Peptidoglycan Binding Region of the Ser/Thr Kinase PrkC from Staphylococcus aureus. Protein and Peptide Letters, 2010, 17, 1296-1299.	0.9	2
313	Modification biological activity of S and R forms of Proteus mirabilis and Burkholderia cepacia lipopolysaccharides by carrageenans. Carbohydrate Polymers, 2016, 149, 408-414.	10.2	2
314	Biophysical Approaches to Solve the Structures of the Complex Glycan Shield of Chloroviruses. Advances in Experimental Medicine and Biology, 2018, 1104, 237-257.	1.6	2
315	The Core Fucose on an IgG Antibody is an Endogenous Ligand of Dectinâ€1. Angewandte Chemie, 2019, 131, 18870-18875.	2.0	2
316	Glycans in Bacterial Infections: Gram-Negative Infections in the Respiratory Tract. , 2021, , 233-249.		2
317	Expanding the Occurrence of Polysaccharides to the Viral World: The Case of Mimivirus. Angewandte Chemie, 2021, 133, 20050-20057.	2.0	2
318	<i>N</i> -glycans from Paramecium bursaria chlorella virus MA-1D: Re-evaluation of the oligosaccharide common core structure. Glycobiology, 2022, 32, 260-273.	2.5	2
319	Peptidoglycan from <i>Akkermansia muciniphila</i> MucT: chemical structure and immunostimulatory properties of muropeptides. Glycobiology, 2022, 32, 712-719.	2.5	2
320	Lipopolysaccharides from three phytopathogenic pseudomonads. Phytochemistry, 1997, 46, 289-292.	2.9	1
321	Microbial glycosylated components in plant disease. , 2010, , 803-820.		1
322	Cyclic enterobacterial common antigens from <i>Escherichia coli</i> O157 as microbe-associated molecular patterns. Canadian Journal of Microbiology, 2014, 60, 173-176.	1.7	1
323	NMR as a Tool to Unveil the Molecular Basis of Glycan-mediated Host–Pathogen Interactions. RSC Drug Discovery Series, 2015, , 21-37.	0.3	1
324	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 477-477.	3.3	1

#	Article	IF	CITATIONS
325	The Peculiar Structure of Acetobacter pasteurianus CIP103108 LPS Core Oligosaccharide. ChemBioChem, 2021, 22, 147-150.	2.6	1
326	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> : Complete Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie, 2021, 133, 10111-10119	9. ^{2.0}	1
327	Molecular Modeling Study of the Carbohydrate Region of the Endotoxin from <i>Burkholderia cenocepacia</i> ETâ€12. European Journal of Organic Chemistry, 2011, 2011, 5114-5122.	2.4	0
328	The XVI European Carbohydrate Congress. Carbohydrate Research, 2012, 356, 11.	2.3	0
329	Frontispiz: Biopolymer Skeleton Produced by <i>Rhizobium radiobacter</i> : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide Oâ€Antigen. Angewandte Chemie, 2020, 132, .	2.0	0
330	Frontispiece: Biopolymer Skeleton Produced by <i>Rhizobium radiobacter</i> : Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide Oâ€Antigen. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
331	Chemical Synthesis of Sialyl Nâ€Clycans and Analysis of Their Recognition by Neuraminidase. Angewandte Chemie, 2021, 133, 24891.	2.0	0
332	Characterization of Natural and Synthetic Sialoglycans Targeting the Hemagglutinin-Neuraminidase of Mumps Virus. Frontiers in Chemistry, 2021, 9, 711346.	3.6	0
333	Structure and Conformation Study of the O-Antigen from the Lipopolysaccharide of Cupriavidus Metallidurans CH34. Polysaccharides, 2022, 3, 188-199.	4.8	0