Xiaocheng Jiang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4050044/xiaocheng-jiang-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34 3,626 23 36 g-index

36 4,054 10.6 st. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
34	Hydrogel facilitated bioelectronic integration. <i>Biomaterials Science</i> , 2021 , 9, 23-37	7.4	7
33	Three-dimensional transistor arrays for intra- and inter-cellular recording <i>Nature Nanotechnology</i> , 2021 ,	28.7	8
32	Emerging investigator series: emerging biotechnologies in wastewater treatment: from biomolecular engineering to multiscale integration. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 1967-1985	4.2	3
31	Living electronics. Nano Research, 2020, 13, 1205-1213	10	9
30	Bottom-Up Construction of Electrochemically Active Living Filters: From Graphene Oxide Mediated Formation of Bacterial Cables to 3D Assembly of Hierarchical Architectures <i>ACS Applied Bio Materials</i> , 2020 , 3, 7376-7381	4.1	1
29	3D Printing of Silk Protein Structures by Aqueous Solvent-Directed Molecular Assembly. <i>Macromolecular Bioscience</i> , 2020 , 20, e1900191	5.5	22
28	Wiving Mnks for 3D Bioprinting. <i>Trends in Biotechnology</i> , 2019 , 37, 795-796	15.1	14
27	Hydrogel Gate Graphene Field-Effect Transistors as Multiplexed Biosensors. <i>Nano Letters</i> , 2019 , 19, 26	52 0-25 2	630
26	Modularized Field-Effect Transistor Biosensors. <i>Nano Letters</i> , 2019 , 19, 6658-6664	11.5	18
25	Biosynthetic Electronic Interfaces for Bridging Microbial and Inorganic Electron Transport. <i>Nano Letters</i> , 2019 , 19, 8787-8792	11.5	4
24	Nanostructured interfaces for probing and facilitating extracellular electron transfer. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 7144-7158	7.3	11
23	Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer. <i>Nano Letters</i> , 2018 , 18, 4606-4610	11.5	12
22	The ins and outs of microorganismBlectrode electron transfer reactions. <i>Nature Reviews Chemistry</i> , 2017 , 1,	34.6	276
21	Microfluidic isolation of platelet-covered circulating tumor cells. <i>Lab on A Chip</i> , 2017 , 17, 3498-3503	7.2	75
20	Scaling of subgap excitations in a superconductor-semiconductor nanowire quantum dot. <i>Physical Review B</i> , 2017 , 95,	3.3	30
19	General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. <i>Nano Letters</i> , 2015 , 15, 2143-8	11.5	158
18	Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures. <i>Nature Nanotechnology</i> , 2014 , 9, 79-84	28.7	389

LIST OF PUBLICATIONS

17	Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. <i>Nano Letters</i> , 2014 , 14, 6737-42	11.5	113
16	Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1. <i>Nature Communications</i> , 2013 , 4, 2751	17.4	50
15	Zero-bias anomaly in a nanowire quantum dot coupled to superconductors. <i>Physical Review Letters</i> , 2012 , 109, 186802	7.4	259
14	Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nature Nanotechnology, 2011 , 7, 174-9	28.7	352
13	Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 122	12:5	126
12	Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16806-10	11.5	124
11	Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 2103	3 ¹ 2 ⁵ 5	105
10	Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties. <i>Nano Letters</i> , 2008 , 8, 3004-9	11.5	176
9	InAs/InP radial nanowire heterostructures as high electron mobility devices. <i>Nano Letters</i> , 2007 , 7, 3214	-8 1.5	336
8	Selective synthesis of monazite- and zircon-type LaVO(4) nanocrystals. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3284-90	3.4	126
7	Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals. <i>Applied Physics Letters</i> , 2004 , 84, 5305-5307	3.4	132
6	Ordered Nanosheet-Based YBO3:Eu3+ Assemblies: Synthesis and Tunable Luminescent Properties. Journal of Physical Chemistry B, 2004 , 108, 3387-3390	3.4	113
5	Acetate-Mediated Growth of Drumlike YBO3:Eu3+ Crystals. Crystal Growth and Design, 2004, 4, 517-520	3.5	73
4	Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System. <i>Crystal Growth and Design</i> , 2004 , 4, 309-313	3.5	66
3	Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties. <i>Journal of Solid State Chemistry</i> , 2003 , 175, 245-251	3.3	115
2	Correlation between Size-Dependent Luminescent Properties and Local Structure around Eu3+ Ions in YBO3:Eu Nanocrystals: An XAFS Study. <i>Chemistry of Materials</i> , 2003 , 15, 3011-3017	9.6	60
1	Size-Dependent Chromaticity in YBO3:Eu Nanocrystals: Correlation with Microstructure and Site Symmetry. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 10610-10617	3.4	232