Xiaocheng Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4050044/publications.pdf

Version: 2024-02-01

218662 345203 4,379 36 26 36 citations g-index h-index papers 36 36 36 5942 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nature Nanotechnology, 2014, 9, 79-84.	31.5	481
2	Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nature Nanotechnology, 2012, 7, 174-179.	31.5	412
3	The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, 2017, 1, .	30.2	385
4	InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices. Nano Letters, 2007, 7, 3214-3218.	9.1	366
5	Zero-Bias Anomaly in a Nanowire Quantum Dot Coupled to Superconductors. Physical Review Letters, 2012, 109, 186802.	7.8	298
6	Size-Dependent Chromaticity in YBO3:Eu Nanocrystals:  Correlation with Microstructure and Site Symmetry. Journal of Physical Chemistry B, 2002, 106, 10610-10617.	2.6	244
7	General Strategy for Biodetection in High Ionic Strength Solutions Using Transistor-Based Nanoelectronic Sensors. Nano Letters, 2015, 15, 2143-2148.	9.1	215
8	Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties. Nano Letters, 2008, 8, 3004-3009.	9.1	189
9	Nanoparticle Facilitated Extracellular Electron Transfer in Microbial Fuel Cells. Nano Letters, 2014, 14, 6737-6742.	9.1	157
10	Rational growth of branched nanowire heterostructures with synthetically encoded properties and function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12212-12216.	7.1	144
11	Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals. Applied Physics Letters, 2004, 84, 5305-5307.	3.3	142
12	Selective Synthesis of Monazite- and Zircon-type LaVO4Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 3284-3290.	2.6	139
13	Probing electron transfer mechanisms in <i>Shewanella oneidensis</i> MR-1 using a nanoelectrode platform and single-cell imaging. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16806-16810.	7.1	138
14	Hydrothermal homogeneous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties. Journal of Solid State Chemistry, 2003, 175, 245-251.	2.9	118
15	Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21035-21038.	7.1	116
16	Ordered Nanosheet-Based YBO3:Eu3+Assemblies:Â Synthesis and Tunable Luminescent Properties. Journal of Physical Chemistry B, 2004, 108, 3387-3390.	2.6	115
17	Microfluidic isolation of platelet-covered circulating tumor cells. Lab on A Chip, 2017, 17, 3498-3503.	6.0	102
18	Acetate-Mediated Growth of Drumlike YBO3:Eu3+Crystals. Crystal Growth and Design, 2004, 4, 517-520.	3.0	73

#	Article	IF	Citations
19	Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1. Nature Communications, 2013, 4, 2751.	12.8	73
20	Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System. Crystal Growth and Design, 2004, 4, 309-313.	3.0	67
21	Correlation between Size-Dependent Luminescent Properties and Local Structure around Eu3+ Ions in YBO3:Eu Nanocrystals:  An XAFS Study. Chemistry of Materials, 2003, 15, 3011-3017.	6.7	64
22	Hydrogel Gate Graphene Field-Effect Transistors as Multiplexed Biosensors. Nano Letters, 2019, 19, 2620-2626.	9.1	52
23	Scaling of subgap excitations in a superconductor-semiconductor nanowire quantum dot. Physical Review B, 2017, 95, .	3.2	45
24	3D Printing of Silk Protein Structures by Aqueous Solventâ€Directed Molecular Assembly. Macromolecular Bioscience, 2020, 20, e1900191.	4.1	42
25	Modularized Field-Effect Transistor Biosensors. Nano Letters, 2019, 19, 6658-6664.	9.1	38
26	Three-dimensional transistor arrays for intra- and inter-cellular recording. Nature Nanotechnology, 2022, 17, 292-300.	31.5	30
27	Conformation-driven strategy for resilient and functional protein materials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
28	â€~Living' Inks for 3D Bioprinting. Trends in Biotechnology, 2019, 37, 795-796.	9.3	20
29	Living electronics. Nano Research, 2020, 13, 1205-1213.	10.4	19
30	Nanostructured interfaces for probing and facilitating extracellular electron transfer. Journal of Materials Chemistry B, 2018, 6, 7144-7158.	5.8	17
31	Hydrogel facilitated bioelectronic integration. Biomaterials Science, 2021, 9, 23-37.	5.4	17
32	Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer. Nano Letters, 2018, 18, 4606-4610.	9.1	16
33	Biosynthetic Electronic Interfaces for Bridging Microbial and Inorganic Electron Transport. Nano Letters, 2019, 19, 8787-8792.	9.1	9
34	Emerging investigator series: emerging biotechnologies in wastewater treatment: from biomolecular engineering to multiscale integration. Environmental Science: Water Research and Technology, 2020, 6, 1967-1985.	2.4	8
35	Bottom-Up Construction of Electrochemically Active Living Filters: From Graphene Oxide Mediated Formation of Bacterial Cables to 3D Assembly of Hierarchical Architectures. ACS Applied Bio Materials, 2020, 3, 7376-7381.	4.6	4
36	Self-Assembled Biohybrid: A Living Material To Bridge the Functions between Electronics and Multilevel Biological Modules/Systems. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32289-32298.	8.0	3