Tom D Sheppard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4049928/publications.pdf Version: 2024-02-01

TOM D SHEDDADD

#	Article	IF	CITATIONS
1	Recent Developments in Amide Synthesis: Direct Amidation of Carboxylic Acids and Transamidation Reactions. European Journal of Organic Chemistry, 2013, 2013, 7453-7465.	1.2	332
2	A green chemistry perspective on catalytic amide bond formation. Nature Catalysis, 2019, 2, 10-17.	16.1	262
3	Direct Synthesis of Amides from Carboxylic Acids and Amines Using B(OCH ₂ CF ₃) ₃ . Journal of Organic Chemistry, 2013, 78, 4512-4523.	1.7	215
4	Motional timescale predictions by molecular dynamics simulations: Case study using proline and hydroxyproline sidechain dynamics. Proteins: Structure, Function and Bioinformatics, 2014, 82, 195-215.	1.5	202
5	The application of design of experiments (DoE) reaction optimisation and solvent selection in the development of new synthetic chemistry. Organic and Biomolecular Chemistry, 2016, 14, 2373-2384.	1.5	141
6	Borate esters: Simple catalysts for the sustainable synthesis of complex amides. Science Advances, 2017, 3, e1701028.	4.7	139
7	Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Organic and Biomolecular Chemistry, 2011, 9, 1320.	1.5	119
8	Metal-catalysed halogen exchange reactions of aryl halides. Organic and Biomolecular Chemistry, 2009, 7, 1043.	1.5	116
9	Strategies for the Synthesis of 2,3-Dihydrobenzofurans. Journal of Chemical Research, 2011, 35, 377-385.	0.6	106
10	Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science, 2020, 370, 865-869.	6.0	105
11	Furfurylamines from biomass: transaminase catalysed upgrading of furfurals. Green Chemistry, 2017, 19, 397-404.	4.6	94
12	Gold―and Silver atalyzed Reactions of Propargylic Alcohols in the Presence of Protic Additives. Chemistry - A European Journal, 2012, 18, 4748-4758.	1.7	88
13	A General Procedure for the Synthesis of Enones via Gold-Catalyzed Meyerâ^'Schuster Rearrangement of Propargylic Alcohols at Room Temperature. Journal of Organic Chemistry, 2011, 76, 1479-1482.	1.7	85
14	Palladium(II)-Catalysed Oxidation of Alkenes. Synthesis, 2015, 47, 3079-3117.	1.2	82
15	Mechanistic insights into boron-catalysed direct amidation reactions. Chemical Science, 2018, 9, 1058-1072.	3.7	82
16	An Alternative Approach to Aldol Reactions: Gold-Catalyzed Formation of Boron Enolates from Alkynes. Journal of the American Chemical Society, 2010, 132, 5968-5969.	6.6	75
17	A Series of α7 Nicotinic Acetylcholine Receptor Allosteric Modulators with Close Chemical Similarity but Diverse Pharmacological Properties. Molecular Pharmacology, 2012, 81, 710-718.	1.0	60
18	New Naphthaleneâ€Chroman Coupling Products from the Endophytic Fungus, <i>Nodulisporium sp.</i> from <i>Erica arborea</i> . European Journal of Organic Chemistry, 2009, 2009, 1564-1569.	1.2	54

#	Article	IF	CITATIONS
19	Highly Diastereoselective Lithium Enolate Aldol Reactions of Butane-2,3-diacetal Desymmetrized Glycolic Acid and Deprotection to Enantiopure anti-2,3-Dihydroxy Esters. Organic Letters, 2001, 3, 3749-3752.	2.4	53
20	Regioselective Dihalohydration Reactions of Propargylic Alcohols: Gold atalyzed and Noncatalyzed Reactions. Angewandte Chemie - International Edition, 2014, 53, 10747-10750.	7.2	53
21	Structurally Similar Allosteric Modulators of $\hat{I}\pm7$ Nicotinic Acetylcholine Receptors Exhibit Five Distinct Pharmacological Effects. Journal of Biological Chemistry, 2015, 290, 3552-3562.	1.6	53
22	Chemical cascades in water for the synthesis of functionalized aromatics from furfurals. Green Chemistry, 2016, 18, 1855-1858.	4.6	45
23	Preparation of enantiopure butane-2,3-diacetals of glycolic acid and alkylation reactions leading to α-hydroxyacid and amide derivatives. Organic and Biomolecular Chemistry, 2004, 2, 3608-3617.	1.5	43
24	Catalytic Electrophilic Halogenation of Silylâ€Protected and Terminal Alkynes: Trapping Gold(I) Acetylides <i>vs</i> . a BrÃ,nsted Acidâ€Promoted Reaction. Advanced Synthesis and Catalysis, 2012, 354, 3217-3224.	2.1	41
25	An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discussions, 2017, 202, 415-431.	1.6	41
26	Protectingâ€Groupâ€Free Amidation of Amino Acids using Lewis Acid Catalysts. Chemistry - A European Journal, 2018, 24, 7033-7043.	1.7	41
27	Chiral Glycolate Equivalents for the Asymmetric Synthesis of α-Hydroxycarbonyl Compounds. Bulletin of the Chemical Society of Japan, 2007, 80, 1451-1472.	2.0	39
28	Diversity of Nicotinic Acetylcholine Receptor Positive Allosteric Modulators Revealed by Mutagenesis and a Revised Structural Model. Molecular Pharmacology, 2018, 93, 128-140.	1.0	39
29	Studies on the generation of enolate anions from butane-2,3-diacetal protected glycolic acid derivatives and subsequent highly diastereoselective coupling reactions with aldehydes and acid chlorides. Organic and Biomolecular Chemistry, 2004, 2, 3618-3627.	1.5	38
30	Transketolase catalysed upgrading of <scp> </scp> -arabinose: the one-step stereoselective synthesis of <scp> </scp> -gluco-heptulose. Green Chemistry, 2016, 18, 3158-3165.	4.6	35
31	Sulfur-Directed Olefin Oxidations: Observation of Divergent Reaction Mechanisms in the Palladium-Mediated Acetoxylation of Unsaturated Thioacetals. Organometallics, 2011, 30, 1772-1775.	1.1	33
32	The Mizorokiâ€Heck Reaction with Internal Olefins: Reactivities and Stereoselectivities. Asian Journal of Organic Chemistry, 2020, 9, 480-491.	1.3	32
33	Gold catalysed synthesis of 3-alkoxyfurans at room temperature. Chemical Communications, 2014, 50, 1302-1304.	2.2	31
34	B(OCH ₂ CF ₃) ₃ -mediated direct amidation of pharmaceutically relevant building blocks in cyclopentyl methyl ether. Organic and Biomolecular Chemistry, 2015, 13, 10888-10894.	1.5	30
35	Direct amidation of unprotected amino acids using B(OCH ₂ CF ₃) ₃ . Chemical Communications, 2016, 52, 8846-8849.	2.2	30
36	Alternative Approaches to Enolate Chemistry. Synlett, 2011, 2011, 1340-1344.	1.0	29

#	Article	IF	CITATIONS
37	Highly Regioselective Synthesis of Substituted Isoindolinones <i>via</i> Rutheniumâ€Catalyzed Alkyne Cyclotrimerizations. Advanced Synthesis and Catalysis, 2013, 355, 2353-2360.	2.1	29
38	lsocyanide based multicomponent reactions of oxazolidines and related systems. Tetrahedron, 2010, 66, 6496-6507.	1.0	27
39	Irreversible <i>endo</i> â€Selective Diels–Alder Reactions of Substituted Alkoxyfurans: A General Synthesis of <i>endo</i> â€Cantharimides. Chemistry - A European Journal, 2015, 21, 6107-6114.	1.7	27
40	Intercepting the Goldâ€Catalysed Meyer–Schuster Rearrangement by Controlled Protodemetallation: A Regioselective Hydration of Propargylic Alcohols. Advanced Synthesis and Catalysis, 2016, 358, 1519-1525.	2.1	27
41	Silver-Free Palladium-Catalyzed C(sp ³)–H Arylation of Saturated Bicyclic Amine Scaffolds. Journal of Organic Chemistry, 2018, 83, 2495-2503.	1.7	27
42	Catalytic direct amidations in <i>tert</i> -butyl acetate using B(OCH ₂ CF ₃) ₃ . Organic and Biomolecular Chemistry, 2019, 17, 6465-6469.	1.5	26
43	Michael, Michael–aldol and Michael–Michael reactions of enolate equivalents of butane-2,3-diacetal protected glycolic acid derivatives. Organic and Biomolecular Chemistry, 2005, 3, 4095.	1.5	24
44	Observations on the direct amidocyclopropanation of alkenes using organozinc carbenoids. Tetrahedron, 2007, 63, 6462-6476.	1.0	23
45	Aminopolyols from Carbohydrates: Amination of Sugars and Sugarâ€Derived Tetrahydrofurans with Transaminases. Angewandte Chemie - International Edition, 2019, 58, 3854-3858.	7.2	23
46	One-pot, two-step transaminase and transketolase synthesis of l-gluco-heptulose from l-arabinose. Enzyme and Microbial Technology, 2018, 116, 16-22.	1.6	22
47	Rapid synthesis of highly functionalised α-amino amides and medium ring lactones using multicomponent reactions of amino alcohols and isocyanides. Organic and Biomolecular Chemistry, 2012, 10, 162-170.	1.5	20
48	The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors. Neuropharmacology, 2015, 97, 75-85.	2.0	19
49	Asymmetric Synthesis of Aminocyclopropanes and <i>N</i> â€Cyclopropylamino Alcohols Through Direct Amidocyclopropanation of Alkenes Using Chiral Organozinc Carbenoids. European Journal of Organic Chemistry, 2009, 2009, 1532-1548.	1.2	18
50	Rapid Assembly of Functionalised Spirocyclic Indolines by Palladium atalysed Dearomatising Diallylation of Indoles with Allyl Acetate. Chemistry - A European Journal, 2014, 20, 13375-13381.	1.7	18
51	An Accessible Method for DFT Calculation of ¹¹ B NMR Shifts of Organoboron Compounds. Journal of Organic Chemistry, 2018, 83, 8020-8025.	1.7	18
52	HBF ₄ atalysed Nucleophilic Substitutions of Propargylic Alcohols. European Journal of Organic Chemistry, 2015, 2015, 7544-7549.	1.2	17
53	Reporter Resins for Solid-Phase Chemistry. Organic Letters, 2001, 3, 507-510.	2.4	16
54	Engineering transketolase to accept both unnatural donor and acceptor substrates and produce αâ€hydroxyketones. FEBS Journal, 2020, 287, 1758-1776.	2.2	16

#	Article	IF	CITATIONS
55	A Rapid Route to Aminocyclopropanes via Carbamatoorganozinc Carbenoids. Angewandte Chemie - International Edition, 2013, 52, 10060-10063.	7.2	15
56	Sustainable Synthesis of Chiral Tetrahydrofurans through the Selective Dehydration of Pentoses. Chemistry - A European Journal, 2015, 21, 15947-15950.	1.7	14
57	Identification by virtual screening and functional characterisation of novel positive and negative allosteric modulators of the α7 nicotinic acetylcholine receptor. Neuropharmacology, 2018, 139, 194-204.	2.0	14
58	Prebiotic Catalytic Peptide Ligation Yields Proteinogenic Peptides by Intramolecular Amide Catalyzed Hydrolysis Facilitating Regioselective Lysine Ligation in Neutral Water. Journal of the American Chemical Society, 2022, 144, 10151-10155.	6.6	13
59	Development of a microwave-assisted sustainable conversion of furfural hydrazones to functionalised phthalimides in ionic liquids. RSC Advances, 2018, 8, 22617-22624.	1.7	12
60	Synthesis of substituted benzooxaborinin-1-ols via palladium-catalysed cyclisation of alkenyl- and alkynyl-boronic acids. Organic and Biomolecular Chemistry, 2016, 14, 8039-8043.	1.5	11
61	Intramolecular amidocyclopropanation reactions using diethoxymethyl-functionalised lactams as organozinc carbenoid precursors. Tetrahedron Letters, 2009, 50, 3709-3712.	0.7	10
62	A lactate-derived chiral aldehyde for determining the enantiopurity of enantioenriched primary amines. Organic and Biomolecular Chemistry, 2015, 13, 9050-9054.	1.5	10
63	Site selectivities in fluorination. Tetrahedron Letters, 2018, 59, 789-798.	0.7	9
64	Gold-Catalyzed Hydrophenoxylation of Propargylic Alcohols and Amines: Synthesis of Phenyl Enol Ethers. Organic Letters, 2019, 21, 4443-4447.	2.4	9
65	Functionalised tetrahydrofuran fragments from carbohydrates or sugar beet pulp biomass. Green Chemistry, 2019, 21, 2035-2042.	4.6	9
66	Functionalisation of terpenoids at C-4 via organopalladium dimers: cyclopropane formation during oxidation of homoallylic σ-organopalladium intermediates with lead tetraacetate. Tetrahedron, 2007, 63, 12608-12615.	1.0	8
67	Functionalisation of ethereal-based saturated heterocycles with concomitant aerobic C–H activation and C–C bond formation. Chemical Science, 2022, 13, 8626-8633.	3.7	8
68	Development and Application of Synthetic Affinity Ligands for the Purification of Ferritin-Based Influenza Antigens. Bioconjugate Chemistry, 2017, 28, 1931-1943.	1.8	7
69	Gold-Catalyzed Hydroamination of Propargylic Alcohols: Controlling Divergent Catalytic Reaction Pathways To Access 1,3-Amino Alcohols, 3-Hydroxyketones, or 3-Aminoketones. Journal of Organic Chemistry, 2019, 84, 11391-11406.	1.7	7
70	Dihalohydration of Alkynols: A Versatile Approach to Diverse Halogenated Molecules. European Journal of Organic Chemistry, 2018, 2018, 4018-4028.	1.2	6
71	An expedient synthesis of orthogonally protected lysinoalanine from Aloc-protected Garner's aldehyde. Tetrahedron Letters, 2010, 51, 6381-6383.	0.7	5
72	Tuning Reactivity in Pdâ€catalysed C(<i>sp</i> ³)â€H Arylations via Directing Group Modifications and Solvent Selection. Advanced Synthesis and Catalysis, 2020, 362, 5105-5115.	2.1	5

#	Article	IF	CITATIONS
73	A Convenient Synthesis of Tri- and Tetramethylbenzaldehydes from Readily Available Phenols. Synlett, 2014, 25, 381-384.	1.0	4
74	The selective conversion of <scp>d</scp> -limonene to <i>p</i> ,α-dimethylstyrene. RSC Advances, 2014, 4, 61652-61655.	1.7	4
75	Asymmetric Synthesis of Secondary Alcohols and 1,2-Disubstituted Epoxides via Organocatalytic Sulfenylation. Synlett, 2015, 27, 33-36.	1.0	4
76	Complexity-generating hydration reactions via gold-catalyzed addition of boronic acids to alkynes. Pure and Applied Chemistry, 2012, 84, 2431-2441.	0.9	3
77	Regioselective Dehydration of Sugar Thioacetals under Mild Conditions. Organic Letters, 2021, 23, 2488-2492.	2.4	3
78	Direct Conversion of Hydrazones to Amines using Transaminases. ChemCatChem, 2021, 13, 4520-4523.	1.8	3
79	Tertiary Alkylative Suzuki–Miyaura Couplings. Synthesis, 2022, 54, 2340-2349.	1.2	3
80	Mechanoenzymatic Reactions with Whole Cell Transaminases: Shaken, not Stirred. Green Chemistry, 0, , \cdot	4.6	3
81	Observations on the Reaction of N-Alkyloxazolidines, Isocyanides and Carboxylic Acids: A Novel Three-Component Reaction Leading to N-Acyloxyethylamino Acid Amides. Synlett, 2006, 2006, 2281-2283.	1.0	2
82	Aminopolyols from Carbohydrates: Amination of Sugars and Sugarâ€Đerived Tetrahydrofurans with Transaminases. Angewandte Chemie, 2019, 131, 3894-3898.	1.6	2
83	Observations on the Synthesis and Carbocyclisation Reactions of 6-Oxohexa-2,3-dienoates. Synlett, 2008, 2008, 2097-2100.	1.0	1
84	Data on a thermostable enzymatic one-pot reaction for the production of a high-value compound from l-arabinose. Data in Brief, 2018, 19, 1341-1354.	0.5	1
85	Hybrid Reaction Systems for the Synthesis of Alkylated Compounds Based upon Cu atalyzed Coupling of Radicals and Organometallic Species. Chemical Record, 2020, 20, 403-412.	2.9	1
86	Preparation of Enantiopure Butane-2,3-diacetals of Glycolic Acid and Alkylation Reactions Leading to ?-Hydroxyacid and Amide Derivatives ChemInform, 2005, 36, no.	0.1	0
87	Studies on the Generation of Enolate Anions from Butane-2,3-diacetal Protected Glycolic Acid Derivatives and Subsequent Highly Diastereoselective Coupling Reactions with Aldehydes and Acid Chlorides ChemInform, 2005, 36, no.	0.1	0
88	Synthesis of a Ceramide Sphingolipid as a Potential Sex Pheromone of the Hair CrabErimacrus isenbeckiiUsing Butane-2,3-diacetal Desymmetrised Glycolic Acid Building Blocks. Synlett, 2005, 2005, 481-484.	1.0	0
89	Synthesis of Enantiopure Aminocyclopropanes by Diastereoselective Addition of a Chiral Amino Substituted Organozinc Carbenoid to Alkenes. Synthesis, 2005, 2005, 3186-3188.	1.2	0
90	Highlights from the 47th EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2012. Chemical Communications, 2012, 48, 11597.	2.2	0

#	Article	IF	CITATIONS
91	Synthesis of Boronocysteine. Synlett, 2018, 29, 314-317.	1.0	0