List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404984/publications.pdf Version: 2024-02-01

		1094	2558
891	58,759	112	195
papers	citations	h-index	g-index
0.5.1	0.51	0.5.1	45 450
951	951	951	45453
all docs	docs citations	times ranked	citing authors

Μαρτινι Ριιμέρα

#	Article	IF	CITATIONS
1	Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 2014, 43, 291-312.	18.7	1,479
2	Graphene-based nanomaterials for energy storage. Energy and Environmental Science, 2011, 4, 668-674.	15.6	1,169
3	Graphene for electrochemical sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2010, 29, 954-965.	5.8	1,041
4	Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 2010, 39, 4146.	18.7	1,008
5	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-7188.	23.0	968
6	3D-printing technologies for electrochemical applications. Chemical Society Reviews, 2016, 45, 2740-2755.	18.7	775
7	Graphene in biosensing. Materials Today, 2011, 14, 308-315.	8.3	733
8	Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 2015, 115, 11941-11966.	23.0	719
9	New materials for electrochemical sensing VI: Carbon nanotubes. TrAC - Trends in Analytical Chemistry, 2005, 24, 826-838.	5.8	626
10	Fabrication of Micro/Nanoscale Motors. Chemical Reviews, 2015, 115, 8704-8735.	23.0	603
11	2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Advanced Materials, 2017, 29, 1605299.	11.1	601
12	Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis, 2018, 1, 909-921.	16.1	591
13	Electrochemistry of graphene: new horizons for sensing and energy storage. Chemical Record, 2009, 9, 211-223.	2.9	578
14	2H → 1T phase transition and hydrogen evolution activity of MoS ₂ , MoSe ₂ , WS ₂ and WSe ₂ strongly depends on the MX ₂ composition. Chemical Communications, 2015, 51, 8450-8453.	2.2	565
15	Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014, 2, 8981-8987.	5.2	552
16	Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 2007, 123, 1195-1205.	4.0	447
17	Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie - International Edition, 2017, 56, 8052-8072.	7.2	407
18	Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Microâ€objects. Advanced Functional Materials, 2010, 20, 2430-2435.	7.8	390

ARTICLE IF CITATIONS Graphene and its electrochemistry – an update. Chemical Society Reviews, 2016, 45, 2458-2493. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal 20 2.8 363 exfoliation exhibit verý different electrochemical properties. Nanoscale, 2012, 4, 3515. Cytotoxicity of Exfoliated Transitionâ€Metal Dichalcogenides (MoS₂, WS₂, and) Tj ETQq1 1 0.784314 rgBT 1.7 358 2014, 20, 9627-9632. The Electrochemistry of Carbon Nanotubes: Fundamentals and Applications. Chemistry - A European 22 1.7 351 Journal, 2009, 15, 4970-4978. Magnetically Driven Micro and Nanorobots. Chemical Reviews, 2021, 121, 4999-5041. 23.0 345 24 Covalent chemistry on graphene. Chemical Society Reviews, 2013, 42, 3222. 18.7 335 "Metalâ€Free―Catalytic Oxygen Reduction Reaction on Heteroatomâ€Doped Graphene is Caused by Trace 7.2 Metal Impurities. Angewandte Chemie - International Edition, 2013, 52, 13818-13821. Sulfur-Doped Graphene <i>via</i> Thermal Exfoliation of Graphite Oxide in H₂S, 7.3 26 321 SO₂, or CS₂ Gas. ACS Nano, 2013, 7, 5262-5272. Layered and two dimensional metal oxides for electrochemical energy conversion. Energy and 15.6 310 Environmental Science, 2019, 12, 41-58. 28 Graphane and hydrogenated graphene. Chemical Society Reviews, 2013, 42, 5987. 18.7 308 Twoâ€Dimensional Transition Metal Dichalcogenides in Biosystems. Advanced Functional Materials, 306 2015, 25, 5086-5099. 30 Graphene Platform for Hairpin-DNA-Based Impedimetric Genosensing. ACS Nano, 2011, 5, 2356-2361. 7.3 289 Electrochemistry at Chemically Modified Graphenes. Chemistry - A European Journal, 2011, 17, 288 10763-10770. Electrochemistry of Transition Metal Dichalcogenides: Strong Dependence on the Metal-to-Chalcogen 32 7.3 288 Composition and Exfoliation Method. ACS Nano, 2014, 8, 12185-12198. Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC - Trends in 5.8 Analytical Chemistry, 2014, 61, 49-53. Carbon Nanotubes Contain Residual Metal Catalyst Nanoparticles even after Washing with Nitric Acid 34 at Elevated Temperature Because These Metal Nanoparticles Are Sheathed by Several Graphene Sheets. 1.6 267 Langmuir, 2007, 23, 6453-6458. Two-dimensional materials in biomedical, biosensing and sensing applications. Chemical Society 18.7 265 Reviews, 2021, 50, 619-657. Carboxylic Carbon Quantum Dots as a Fluorescent Sensing Platform for DNA Detection. ACS Applied 4.0 261

MARTIN PUMERA

36 Materials & amp; Interfaces, 2016, 8, 1951-1957.

#	Article	IF	CITATIONS
37	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	23.0	255
38	Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS ₂ . Small, 2015, 11, 605-612.	5.2	250
39	Synthesis of Strongly Fluorescent Graphene Quantum Dots by Cage-Opening Buckminsterfullerene. ACS Nano, 2015, 9, 2548-2555.	7.3	248
40	Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochemistry Communications, 2013, 36, 14-18.	2.3	235
41	Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications. Chemistry - A European Journal, 2016, 22, 153-159.	1.7	235
42	Layered Platinum Dichalcogenides (PtS ₂ , PtSe ₂ , and PtTe ₂) Electrocatalysis: Monotonic Dependence on the Chalcogen Size. Advanced Functional Materials, 2016, 26, 4306-4318.	7.8	228
43	Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angewandte Chemie - International Edition, 2017, 56, 10443-10445.	7.2	228
44	Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX ₂ , M =) Tj ETQq0 (0 0 ₅₂ BT /C)verlock 10 T 218
45	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie - International Edition, 2017, 56, 14417-14422.	7.2	216
46	Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale, 2012, 4, 5002.	2.8	214
47	CO ₂ reduction: the quest for electrocatalytic materials. Journal of Materials Chemistry A, 2017, 5, 8230-8246.	5.2	214
48	Contactless Conductivity Detector for Microchip Capillary Electrophoresis. Analytical Chemistry, 2002, 74, 1968-1971.	3.2	211
49	Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO ₂ Catalysts. Journal of the American Chemical Society, 2014, 136, 2719-2722.	6.6	205
50	3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Analytical Chemistry, 2018, 90, 5753-5757.	3.2	205
51	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	6.6	202
52	Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12899-12904.	3.3	195

53	Graphene oxide immobilized enzymes show high thermal and solvent stability. Nanoscale, 2015, 7, 5852-5858.	2.8	195
----	--	-----	-----

54 Covalent functionalization of MoS2. Materials Today, 2016, 19, 140-145.

8.3 190

#	Article	IF	CITATIONS
55	3D Printed Graphene Electrodes' Electrochemical Activation. ACS Applied Materials & Interfaces, 2018, 10, 40294-40301.	4.0	188
56	Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides. Chemistry of Materials, 2012, 24, 2292-2298.	3.2	187
57	Layered Black Phosphorus as a Selective Vapor Sensor. Angewandte Chemie - International Edition, 2015, 54, 14317-14320.	7.2	187
58	Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. ACS Nano, 2015, 9, 5164-5179.	7.3	184
59	3R phase of MoS ₂ and WS ₂ outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017, 53, 3054-3057.	2.2	180
60	Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. Electrophoresis, 2002, 23, 596-601.	1.3	179
61	Carbon nanotube-epoxy composites for electrochemical sensing. Sensors and Actuators B: Chemical, 2006, 113, 617-622.	4.0	179
62	Nanorobots: The Ultimate Wireless Selfâ€Propelled Sensing and Actuating Devices. Chemistry - an Asian Journal, 2009, 4, 1402-1410.	1.7	179
63	Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Applied Materials & Interfaces, 2017, 9, 12563-12573.	4.0	179
64	3D printing of functional microrobots. Chemical Society Reviews, 2021, 50, 2794-2838.	18.7	178
65	Negative Electrocatalytic Effects of p-Doping Niobium and Tantalum on MoS ₂ and WS ₂ for the Hydrogen Evolution Reaction and Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 5724-5734.	5.5	174
66	The Cytotoxicity of Layered Black Phosphorus. Chemistry - A European Journal, 2015, 21, 13991-13995.	1.7	173
67	Helical 3Dâ€Printed Metal Electrodes as Customâ€5haped 3D Platform for Electrochemical Devices. Advanced Functional Materials, 2016, 26, 698-703.	7.8	168
68	(Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors. TrAC - Trends in Analytical Chemistry, 2018, 103, 110-118.	5.8	166
69	Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chemical Society Reviews, 2019, 48, 4966-4978.	18.7	165
70	Metallic Impurities in Graphenes Prepared from Graphite Can Dramatically Influence Their Properties. Angewandte Chemie - International Edition, 2012, 51, 500-503.	7.2	164
71	Gold Nanoparticle-Enhanced Microchip Capillary Electrophoresis. Analytical Chemistry, 2001, 73, 5625-5628.	3.2	163
72	MoS ₂ exhibits stronger toxicity with increased exfoliation. Nanoscale, 2014, 6, 14412-14418.	2.8	162

#	Article	IF	CITATIONS
73	The Covalent Functionalization of Layered Black Phosphorus by Nucleophilic Reagents. Angewandte Chemie - International Edition, 2017, 56, 9891-9896.	7.2	159
74	Will Any Crap We Put into Graphene Increase Its Electrocatalytic Effect?. ACS Nano, 2020, 14, 21-25.	7.3	158
75	Graphite Oxides: Effects of Permanganate and Chlorate Oxidants on the Oxygen Composition. Chemistry - A European Journal, 2012, 18, 13453-13459.	1.7	156
76	Chemical Energy Powered Nano/Micro/Macromotors and the Environment. Chemistry - A European Journal, 2015, 21, 58-72.	1.7	156
77	MXene Titanium Carbide-based Biosensor: Strong Dependence of Exfoliation Method on Performance. Analytical Chemistry, 2020, 92, 2452-2459.	3.2	155
78	Searching for Magnetism in Hydrogenated Graphene: Using Highly Hydrogenated Graphene Prepared <i>via</i> Birch Reduction of Graphite Oxides. ACS Nano, 2013, 7, 5930-5939.	7.3	149
79	Single-Channel Microchip for Fast Screening and Detailed Identification of Nitroaromatic Explosives or Organophosphate Nerve Agents. Analytical Chemistry, 2002, 74, 1187-1191.	3.2	148
80	Electrochemical genosensors for biomedical applications based on gold nanoparticles. Biosensors and Bioelectronics, 2007, 22, 1961-1967.	5.3	143
81	Halogenation of Graphene with Chlorine, Bromine, or Iodine by Exfoliation in a Halogen Atmosphere. Chemistry - A European Journal, 2013, 19, 2655-2662.	1.7	143
82	Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale, 2010, 2, 1643.	2.8	142
83	Black Phosphorus Nanoparticle Labels for Immunoassays via Hydrogen Evolution Reaction Mediation. Analytical Chemistry, 2016, 88, 10074-10079.	3.2	142
84	Graphene for impedimetric biosensing. TrAC - Trends in Analytical Chemistry, 2012, 37, 12-21.	5.8	140
85	Exfoliation of layered materials using electrochemistry. Chemical Society Reviews, 2018, 47, 7213-7224.	18.7	140
86	Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electronâ€Transfer Properties. Angewandte Chemie - International Edition, 2016, 55, 3382-3386.	7.2	139
87	The Toxicity of Graphene Oxides: Dependence on the Oxidative Methods Used. Chemistry - A European Journal, 2013, 19, 8227-8235.	1.7	138
88	The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties. Nanoscale, 2014, 6, 472-476.	2.8	138
89	1T-Phase Transition Metal Dichalcogenides (MoS ₂ , MoSe ₂ , WS ₂ ,) Tj ETQq Enzyme-Based Biosensor. ACS Applied Materials & Interfaces, 2017, 9, 40697-40706.	1 1 0.784 4.0	314 rgBT /〇 138
90	Advances of 2D bismuth in energy sciences. Chemical Society Reviews, 2020, 49, 263-285.	18.7	138

#	Article	IF	CITATIONS
91	Contactless conductivity detection for microfluidics: Designs and applications. Talanta, 2007, 74, 358-364.	2.9	136
92	Magnetically Trigged Direct Electrochemical Detection of DNA Hybridization Using Au67Quantum Dot as Electrical Tracer. Langmuir, 2005, 21, 9625-9629.	1.6	133
93	Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13774-13779.	3.3	133
94	Pristine Basal―and Edgeâ€Planeâ€Oriented Molybdenite MoS ₂ Exhibiting Highly Anisotropic Properties. Chemistry - A European Journal, 2015, 21, 7170-7178.	1.7	133
95	Measurements of Chemical Warfare Agent Degradation Products Using an Electrophoresis Microchip with Contactless Conductivity Detector. Analytical Chemistry, 2002, 74, 6121-6125.	3.2	131
96	What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties?. Nanoscale, 2009, 1, 260.	2.8	130
97	Multicomponent Metallic Impurities and Their Influence upon the Electrochemistry of Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 4401-4405.	1.5	130
98	Dual Conductivity/Amperometric Detection System for Microchip Capillary Electrophoresis. Analytical Chemistry, 2002, 74, 5919-5923.	3.2	129
99	New materials for electrochemical sensing VII. Microfluidic chip platforms. TrAC - Trends in Analytical Chemistry, 2006, 25, 219-235.	5.8	129
100	Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochemistry Communications, 2015, 56, 24-28.	2.3	129
101	Reduction of graphene oxide with substituted borohydrides. Journal of Materials Chemistry A, 2013, 1, 1892-1898.	5.2	127
102	Nanomaterials meet microfluidics. Chemical Communications, 2011, 47, 5671.	2.2	126
103	Nonaqueous Electrophoresis Microchip Separations:Â Conductivity Detection in UV-Absorbing Solvents. Analytical Chemistry, 2003, 75, 341-345.	3.2	125
104	Graphene-based electrochemical sensor for detection of 2,4,6-trinitrotoluene (TNT) in seawater: the comparison of single-, few-, and multilayer graphene nanoribbons and graphite microparticles. Analytical and Bioanalytical Chemistry, 2011, 399, 127-131.	1.9	125
105	Graphene oxide reduction by standard industrial reducing agent: thiourea dioxide. Journal of Materials Chemistry, 2012, 22, 11054.	6.7	125
106	Towards an Ultrasensitive Method for the Determination of Metal Impurities in Carbon Nanotubes. Small, 2008, 4, 1476-1484.	5.2	124
107	Impurities in graphenes and carbon nanotubes and their influence on the redox properties. Chemical Science, 2012, 3, 3347.	3.7	123
108	Metallic 1Tâ€WS ₂ for Selective Impedimetric Vapor Sensing. Advanced Functional Materials, 2015, 25, 5611-5616.	7.8	122

#	Article	IF	CITATIONS
109	Food Analysis on Microfluidic Devices Using Ultrasensitive Carbon Nanotubes Detectors. Analytical Chemistry, 2007, 79, 7408-7415.	3.2	120
110	Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation. Chemistry - an Asian Journal, 2010, 5, 266-271.	1.7	120
111	Few-layer black phosphorus nanoparticles. Chemical Communications, 2016, 52, 1563-1566.	2.2	120
112	The reduction of graphene oxide with hydrazine: elucidating its reductive capability based on a reaction-model approach. Chemical Communications, 2016, 52, 72-75.	2.2	117
113	Layered transition metal dichalcogenide electrochemistry: journey across the periodic table. Chemical Society Reviews, 2018, 47, 5602-5613.	18.7	117
114	Carbon nanotube/polysulfone screen-printed electrochemical immunosensor. Biosensors and Bioelectronics, 2007, 23, 332-340.	5.3	114
115	Externalâ€Energyâ€Independent Polymer Capsule Motors and Their Cooperative Behaviors. Chemistry - A European Journal, 2011, 17, 12020-12026.	1.7	114
116	Inherently Electroactive Graphene Oxide Nanoplatelets As Labels for Single Nucleotide Polymorphism Detection. ACS Nano, 2012, 6, 8546-8551.	7.3	113
117	3D-printed graphene direct electron transfer enzyme biosensors. Biosensors and Bioelectronics, 2020, 151, 111980.	5.3	113
118	Visible-Light-Driven Single-Component BiVO ₄ Micromotors with the Autonomous Ability for Capturing Microorganisms. ACS Nano, 2019, 13, 8135-8145.	7.3	110
119	Towards graphene bromide: bromination of graphite oxide. Nanoscale, 2014, 6, 6065-6074.	2.8	109
120	Two-Dimensional 1T-Phase Transition Metal Dichalcogenides as Nanocarriers To Enhance and Stabilize Enzyme Activity for Electrochemical Pesticide Detection. ACS Nano, 2017, 11, 5774-5784.	7.3	109
121	Boron-Doped Graphene: Scalable and Tunable p-Type Carrier Concentration Doping. Journal of Physical Chemistry C, 2013, 117, 23251-23257.	1.5	108
122	Fuel-Free Light-Powered TiO ₂ /Pt Janus Micromotors for Enhanced Nitroaromatic Explosives Degradation. ACS Applied Materials & Interfaces, 2018, 10, 22427-22434.	4.0	108
123	A Mechanism of Adsorption of βâ€Nicotinamide Adenine Dinucleotide on Graphene Sheets: Experiment and Theory. Chemistry - A European Journal, 2009, 15, 10851-10856.	1.7	105
124	Carbocatalysis: The State of "Metalâ€Free―Catalysis. Chemistry - A European Journal, 2015, 21, 12550-1256	521.7	104
125	Voltammetry of carbon nanotubes and graphenes: excitement, disappointment, and reality. Chemical Record, 2012, 12, 201-213.	2.9	103
126	Graphene and carbon quantum dots electrochemistry. Electrochemistry Communications, 2015, 52, 75-79.	2.3	103

#	Article	IF	CITATIONS
127	Precise Tuning of Surface Composition and Electronâ€Transfer Properties of Graphene Oxide Films through Electroreduction. Chemistry - A European Journal, 2013, 19, 4748-4753.	1.7	101
128	Relationship between Carbon Nanotube Structure and Electrochemical Behavior: Heterogeneous Electron Transfer at Electrochemically Activated Carbon Nanotubes. Chemistry - an Asian Journal, 2008, 3, 2046-2055.	1.7	100
129	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100
130	Analysis of explosivesvia microchip electrophoresis and conventional capillary electrophoresis: A review. Electrophoresis, 2006, 27, 244-256.	1.3	99
131	Biomimetic Artificial Inorganic Enzymeâ€Free Selfâ€Propelled Microfish Robot for Selective Detection of Pb ²⁺ in Water. Chemistry - A European Journal, 2014, 20, 4292-4296.	1.7	99
132	Micro/Nanomachines and Living Biosystems: From Simple Interactions to Microcyborgs. Advanced Functional Materials, 2018, 28, 1705421.	7.8	99
133	Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry - A European Journal, 2018, 24, 5992-6006.	1.7	99
134	Molybdenum disulfide (MoS ₂) nanoflakes as inherently electroactive labels for DNA hybridization detection. Nanoscale, 2014, 6, 11971-11975.	2.8	98
135	Catalytic properties of group 4 transition metal dichalcogenides (MX ₂ ; M = Ti, Zr, Hf; X =) Tj ETQq1	1	4, gBT /Ove
136	Selfâ€Contained Polymer/Metal 3D Printed Electrochemical Platform for Tailored Water Splitting. Advanced Functional Materials, 2018, 28, 1700655.	7.8	98
137	Direct voltammetric determination of gold nanoparticles using graphite-epoxy composite electrode. Electrochimica Acta, 2005, 50, 3702-3707.	2.6	97
138	Size Dependant Electrochemical Behavior of Silver Nanoparticles with Sizes of 10, 20, 40, 80 and 107â€nm. Electroanalysis, 2012, 24, 615-617.	1.5	97
139	Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene. ChemElectroChem, 2015, 2, 324-327.	1.7	97
140	Exfoliation of Layered Topological Insulators Bi ₂ Se ₃ and Bi ₂ Te ₃ <i>via</i> Electrochemistry. ACS Nano, 2016, 10, 11442-11448.	7.3	97
141	From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion. ACS Nano, 2016, 10, 5041-5050.	7.3	97
142	A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components. Analyst, The, 2002, 127, 719-723.	1.7	96
143	Graphene materials preparation methods have dramatic influence upon their capacitance. Electrochemistry Communications, 2012, 14, 5-8.	2.3	96
144	The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochemistry Communications, 2019, 102, 83-88.	2.3	96

#	Article	IF	CITATIONS
145	Pnictogenâ€Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie - International Edition, 2019, 58, 134-138.	7.2	96
146	The chemistry of CVD graphene. Journal of Materials Chemistry C, 2018, 6, 6082-6101.	2.7	95
147	Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Advanced Materials, 2016, 28, 5045-5053.	11.1	94
148	Impact Electrochemistry: Measuring Individual Nanoparticles. ACS Nano, 2014, 8, 7555-7558.	7.3	92
149	Monothiolation and Reduction of Graphene Oxide <i>via</i> One-Pot Synthesis: Hybrid Catalyst for Oxygen Reduction. ACS Nano, 2015, 9, 4193-4199.	7.3	92
150	Bioinspired Spiky Micromotors Based on Sporopollenin Exine Capsules. Advanced Functional Materials, 2017, 27, 1702338.	7.8	92
151	Ultrapure Graphene Is a Poor Electrocatalyst: Definitive Proof of the Key Role of Metallic Impurities in Graphene-Based Electrocatalysis. ACS Nano, 2019, 13, 1574-1582.	7.3	92
152	Cancer Cells Microsurgery <i>via</i> Asymmetric Bent Surface Au/Ag/Ni Microrobotic Scalpels Through a Transversal Rotating Magnetic Field. ACS Nano, 2020, 14, 8247-8256.	7.3	92
153	3D-printed biosensors for electrochemical and optical applications. TrAC - Trends in Analytical Chemistry, 2020, 128, 115933.	5.8	92
154	Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chemical Society Reviews, 2020, 49, 3211-3230.	18.7	91
155	Microchip-based electrochromatography: designs and applications. Talanta, 2005, 66, 1048-1062.	2.9	90
156	Metallic Impurities <i>within</i> Residual Catalyst Metallic Nanoparticles Are in Some Cases Responsible for "Electrocatalytic―Effect of Carbon Nanotubes. Chemistry - an Asian Journal, 2009, 4, 554-560.	1.7	90
157	Radioactive Uranium Preconcentration <i>via</i> Self-Propelled Autonomous Microrobots Based on Metal–Organic Frameworks. ACS Nano, 2019, 13, 11477-11487.	7.3	90
158	Lithium Exfoliated Vanadium Dichalcogenides (VS ₂ , VSe ₂ , VTe ₂) Exhibit Dramatically Different Properties from Their Bulk Counterparts. Advanced Materials Interfaces, 2016, 3, 1600433.	1.9	89
159	Phosphorene and black phosphorus for sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2017, 93, 1-6.	5.8	89
160	Reduction Pathways of 2,4,6-Trinitrotoluene: An Electrochemical and Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 4243-4251.	1.5	88
161	Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. Journal of Materials Chemistry A, 2017, 5, 2739-2748.	5.2	87
162	Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders. Angewandte Chemie, 2017, 129, 14609-14614.	1.6	87

#	Article	IF	CITATIONS
163	Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale, 2013, 5, 2909.	2.8	86
164	Unusual Inherent Electrochemistry of Graphene Oxides Prepared Using Permanganate Oxidants. Chemistry - A European Journal, 2013, 19, 12673-12683.	1.7	86
165	Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 14231-14235.	1.3	86
166	Layered SnS versus SnS ₂ : Valence and Structural Implications on Electrochemistry and Clean Energy Electrocatalysis. Journal of Physical Chemistry C, 2016, 120, 24098-24111.	1.5	85
167	Two-dimensional transition metal dichalcogenide/conducting polymer composites: synthesis and applications. Nanoscale, 2017, 9, 8052-8065.	2.8	85
168	Black Phosphorus Nanoflakes/Polyaniline Hybrid Material for High-Performance Pseudocapacitors. Journal of Physical Chemistry C, 2017, 121, 20532-20538.	1.5	85
169	Metal-Free Visible-Light Photoactivated C ₃ N ₄ Bubble-Propelled Tubular Micromotors with Inherent Fluorescence and On/Off Capabilities. ACS Nano, 2018, 12, 12482-12491.	7.3	85
170	Exfoliated Layered Manganese Trichalcogenide Phosphite (MnP <i>X</i> ₃ , <i>X</i> = S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution. Advanced Functional Materials, 2019, 29, 1805975.	7.8	85
171	Nanomaterials as electrochemical detectors in microfluidics and CE: Fundamentals, designs, and applications. Electrophoresis, 2009, 30, 3315-3323.	1.3	84
172	Solidâ€ S tate Electrochemistry of Graphene Oxides: Absolute Quantification of Reducible Groups using Voltammetry. Chemistry - an Asian Journal, 2011, 6, 2899-2901.	1.7	84
173	Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Advanced Materials, 2015, 27, 2305-2310.	11.1	84
174	Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale, 2019, 11, 12124-12131.	2.8	84
175	Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab on A Chip, 2009, 9, 346-353.	3.1	83
176	Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others. Chemical Society Reviews, 2017, 46, 4450-4463.	18.7	83
177	The Role of the Metal Element in Layered Metal Phosphorus Triselenides upon Their Electrochemical Sensing and Energy Applications. ACS Catalysis, 2017, 7, 8159-8170.	5.5	83
178	Micromotor-Assisted Human Serum Glucose Biosensing. Analytical Chemistry, 2019, 91, 5660-5666.	3.2	83
179	Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Materials Chemistry Frontiers, 2017, 1, 1130-1136.	3.2	82
180	DNA biosensing with 3D printing technology. Analyst, The, 2017, 142, 279-283.	1.7	82

#	Article	IF	CITATIONS
181	Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35371-35375.	4.0	82
182	Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Physical Chemistry Chemical Physics, 2010, 12, 8943.	1.3	81
183	Cooperative Multifunctional Selfâ€Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery. Advanced Functional Materials, 2018, 28, 1804343.	7.8	81
184	Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale, 2012, 4, 4972.	2.8	80
185	Layered transition metal oxyhydroxides as tri-functional electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11920-11929.	5.2	80
186	Templated Electrochemical Fabrication of Hollow Molybdenum Sulfide Microstructures and Nanostructures with Catalytic Properties for Hydrogen Production. ACS Catalysis, 2016, 6, 3985-3993.	5.5	80
187	Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution. ACS Catalysis, 2016, 6, 4594-4607.	5.5	80
188	Atomically Thin 2Dâ€Arsenene by Liquidâ€Phased Exfoliation: Toward Selective Vapor Sensing. Advanced Functional Materials, 2019, 29, 1807004.	7.8	80
189	Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti ₃ C ₂ MXene and 1Tâ€Phase WS ₂ Nanosheets. Advanced Functional Materials, 2020, 30, 2003673.	7.8	80
190	Regulatory Peptides Are Susceptible to Oxidation by Metallic Impurities within Carbon Nanotubes. Chemistry - A European Journal, 2010, 16, 1786-1792.	1.7	79
191	Crucial Role of Surfactants in Bubble-Propelled Microengines. Journal of Physical Chemistry C, 2014, 118, 5268-5274.	1.5	79
192	Electrochemical catalysis at low dimensional carbons: Graphene, carbon nanotubes and beyond – A review. Applied Materials Today, 2016, 5, 134-141.	2.3	79
193	Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano, 2018, 12, 5666-5673.	7.3	79
194	Carbon nanotube/polysulfone composite screen-printed electrochemical enzyme biosensors. Analyst, The, 2007, 132, 142-147.	1.7	78
195	High-pressure hydrogenation of graphene: towards graphane. Nanoscale, 2012, 4, 7006.	2.8	78
196	Transition Metal (Mn, Fe, Co, Ni)â€Doped Graphene Hybrids for Electrocatalysis. Chemistry - an Asian Journal, 2013, 8, 1295-1300.	1.7	78
197	Ultrafast Electrochemical Trigger Drug Delivery Mechanism for Nanographene Micromachines. Advanced Functional Materials, 2019, 29, 1806696.	7.8	78
198	Micro/Nanomotors for Water Purification. Chemistry - A European Journal, 2019, 25, 106-121.	1.7	78

#	Article	IF	CITATIONS
199	Oxidation Debris in Graphene Oxide Is Responsible for Its Inherent Electroactivity. ACS Nano, 2014, 8, 4197-4204.	7.3	77
200	Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Physical Chemistry Chemical Physics, 2016, 18, 1699-1711.	1.3	77
201	Photocatalytic Micromotors Activated by UV to Visible Light for Environmental Remediation, Micropumps, Reversible Assembly, Transportation, and Biomimicry. Small, 2020, 16, e1903179.	5.2	77
202	Refinements to the structure of graphite oxide: absolute quantification of functional groups via selective labelling. Nanoscale, 2015, 7, 20256-20266.	2.8	76
203	Toxicity of graphene related materials and transition metal dichalcogenides. RSC Advances, 2015, 5, 3074-3080.	1.7	76
204	Unconventionally Layered CoTe ₂ and NiTe ₂ as Electrocatalysts for Hydrogen Evolution. Chemistry - A European Journal, 2017, 23, 11719-11726.	1.7	76
205	Micro- and nanorobots based sensing and biosensing. Current Opinion in Electrochemistry, 2018, 10, 174-182.	2.5	76
206	Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC - Trends in Analytical Chemistry, 2021, 135, 116151.	5.8	76
207	Influence of Nitric Acid Treatment of Carbon Nanotubes on Their Physico-Chemical Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 2671-2676.	0.9	75
208	Electrochemistry of folded graphene edges. Nanoscale, 2011, 3, 2256.	2.8	74
209	Catalytic and Lightâ€Driven ZnO/Pt Janus Nano/Micromotors: Switching of Motion Mechanism via Interface Roughness and Defect Tailoring at the Nanoscale. Advanced Functional Materials, 2019, 29, 1808678.	7.8	74
210	Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Research Letters, 2007, 2, 87-93.	3.1	73
211	Nanographite Impurities Dominate Electrochemistry of Carbon Nanotubes. Chemistry - A European Journal, 2010, 16, 10946-10949.	1.7	73
212	Renewal of sp2 bonds in graphene oxides via dehydrobromination. Journal of Materials Chemistry, 2012, 22, 23227.	6.7	73
213	Precise Tuning of the Charge Transfer Kinetics and Catalytic Properties of MoS ₂ Materials via Electrochemical Methods. Chemistry - A European Journal, 2014, 20, 17426-17432.	1.7	73
214	Uranium- and Thorium-Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction. ACS Nano, 2014, 8, 7106-7114.	7.3	73
215	Photochromic Spatiotemporal Control of Bubble-Propelled Micromotors by a Spiropyran Molecular Switch. ACS Nano, 2016, 10, 3543-3552.	7.3	73
216	3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents. Analytical Chemistry, 2017, 89, 8995-9001.	3.2	73

#	Article	IF	CITATIONS
217	Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances. Nanoscale, 2018, 10, 16398-16415.	2.8	73
218	Metal Phosphorous Trichalcogenides (MPCh ₃): From Synthesis to Contemporary Energy Challenges. Angewandte Chemie - International Edition, 2019, 58, 9326-9337.	7.2	73
219	Nucleic Acid Functionalized Graphene for Biosensing. Chemistry - A European Journal, 2012, 18, 1668-1673.	1.7	72
220	Boron and nitrogen doping of graphene via thermal exfoliation of graphite oxide in a BF3 or NH3 atmosphere: contrasting properties. Journal of Materials Chemistry A, 2013, 1, 13146.	5.2	72
221	Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nature Communications, 2022, 13, .	5.8	72
222	Fe ⁰ Nanomotors in Ton Quantities (10 ²⁰ Units) for Environmental Remediation. Chemistry - A European Journal, 2016, 22, 4789-4793.	1.7	71
223	The Electrochemical Response of Graphene Sheets is Independent of the Number of Layers from a Single Graphene Sheet to Multilayer Stacked Graphene Platelets. Chemistry - an Asian Journal, 2010, 5, 2355-2357.	1.7	70
224	Selfâ€Propelled Supercapacitors for Onâ€Demand Circuit Configuration Based on WS ₂ Nanoparticles Micromachines. Advanced Functional Materials, 2016, 26, 6662-6667.	7.8	70
225	ZnO/ZnO ₂ /Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light. ACS Applied Materials & Interfaces, 2018, 10, 42688-42697.	4.0	70
226	Products of Degradation of Black Phosphorus in Protic Solvents. ACS Nano, 2018, 12, 8390-8396.	7.3	70
227	Impedimetric thrombin aptasensor based on chemically modified graphenes. Nanoscale, 2012, 4, 143-147.	2.8	69
228	On Oxygenâ€Containing Groups in Chemically Modified Graphenes. Chemistry - A European Journal, 2012, 18, 4541-4548.	1.7	69
229	Challenges of the movement of catalytic micromotors in blood. Lab on A Chip, 2013, 13, 1930.	3.1	69
230	Water-soluble highly fluorinated graphite oxide. RSC Advances, 2014, 4, 1378-1387.	1.7	69
231	Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts. Electrochemistry Communications, 2010, 12, 1375-1377.	2.3	68
232	Graphene Oxides Prepared by Hummers', Hofmann's, and Staudenmaier's Methods: Dramatic Influen on Heavyâ€Metalâ€Ion Adsorption. ChemPhysChem, 2014, 15, 2922-2929.	ces 1.0	68
233	Alternating Misfit Layered Transition/Alkaline Earth Metal Chalcogenide Ca ₃ Co ₄ O ₉ as a New Class of Chalcogenide Materials for Hydrogen Evolution. Chemistry of Materials, 2014, 26, 4130-4136.	3.2	68
234	Catalytic DNA-Functionalized Self-Propelled Micromachines for Environmental Remediation. CheM, 2016, 1, 473-481.	5.8	68

#	Article	IF	CITATIONS
235	Environmental impact and potential health risks of 2D nanomaterials. Environmental Science: Nano, 2017, 4, 1617-1633.	2.2	68
236	Influence of gold nanoparticle size (2–50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study. Physical Chemistry Chemical Physics, 2011, 13, 4980.	1.3	67
237	Nanotoxicology: The Molecular Science Point of View. Chemistry - an Asian Journal, 2011, 6, 340-348.	1.7	67
238	Motion Control of Microâ€/Nanomotors. Chemistry - A European Journal, 2016, 22, 14796-14804.	1.7	67
239	Bottom-up Electrosynthesis of Highly Active Tungsten Sulfide (WS _{3–<i>x</i>}) Films for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2016, 8, 3948-3957.	4.0	67
240	Emerging materials for the fabrication of micro/nanomotors. Nanoscale, 2017, 9, 2109-2116.	2.8	67
241	Nano/Microrobots Meet Electrochemistry. Advanced Functional Materials, 2017, 27, 1604759.	7.8	67
242	3Dâ€printed Metal Electrodes for Heavy Metals Detection by Anodic Stripping Voltammetry. Electroanalysis, 2017, 29, 2444-2453.	1.5	67
243	Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC - Trends in Analytical Chemistry, 2018, 105, 251-262.	5.8	67
244	Microplastic Removal and Degradation by Musselâ€Inspired Adhesive Magnetic/Enzymatic Microrobots. Small Methods, 2021, 5, e2100230.	4.6	67
245	Capillary electrophoresis–electrochemistry microfluidic system for the determination of organic peroxides. Journal of Chromatography A, 2002, 952, 249-254.	1.8	66
246	Single-, Few-, and Multilayer Graphene Not Exhibiting Significant Advantages over Graphite Microparticles in Electroanalysis. Analytical Chemistry, 2010, 82, 8367-8370.	3.2	66
247	3D-printed Ag/AgCl pseudo-reference electrodes. Electrochemistry Communications, 2019, 103, 104-108.	2.3	66
248	Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors. Chemical Communications, 2016, 52, 4333-4336.	2.2	65
249	Tailoring Metal/TiO ₂ Interface to Influence Motion of Lightâ€Activated Janus Micromotors. Advanced Functional Materials, 2020, 30, 1908614.	7.8	65
250	Electron transfer properties of chemically reduced graphene materials with different oxygen contents. Journal of Materials Chemistry A, 2014, 2, 10668-10675.	5.2	64
251	Microrobots Derived from Variety Plant Pollen Grains for Efficient Environmental Clean Up and as an Antiâ€Cancer Drug Carrier. Advanced Functional Materials, 2020, 30, 2000112.	7.8	64
252	Bimetallic Nickel–Iron Impurities within Singleâ€Walled Carbon Nanotubes Exhibit Redox Activity towards the Oxidation of Amino Acids. ChemPhysChem, 2009, 10, 1770-1773.	1.0	63

#	Article	IF	CITATIONS
253	Heteroatom modified graphenes: electronic and electrochemical applications. Journal of Materials Chemistry C, 2014, 2, 6454-6461.	2.7	63
254	Glucose Biosensor Based on Carbon Nanotube Epoxy Composites. Journal of Nanoscience and Nanotechnology, 2005, 5, 1694-1698.	0.9	62
255	Carbon nanotube detectors for microchip CE: Comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Electrophoresis, 2007, 28, 1274-1280.	1.3	62
256	Exfoliated transition metal dichalcogenides (MoS2, MoSe2, WS2, WSe2): An electrochemical impedance spectroscopic investigation. Electrochemistry Communications, 2015, 50, 39-42.	2.3	62
257	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	7.3	62
258	Micromotors with built-in compasses. Chemical Communications, 2012, 48, 10090.	2.2	61
259	Concentric bimetallic microjets by electrodeposition. RSC Advances, 2013, 3, 3963.	1.7	61
260	Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochemistry Communications, 2013, 28, 51-53.	2.3	61
261	Nitrogen doped graphene: influence of precursors and conditions of the synthesis. Journal of Materials Chemistry C, 2014, 2, 2887-2893.	2.7	61
262	Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon, 2014, 77, 508-517.	5.4	61
263	2H → 1T Phase Change in Direct Synthesis of WS ₂ Nanosheets via Solution-Based Electrochemical Exfoliation and Their Catalytic Properties. ACS Applied Materials & Interfaces, 2017, 9, 26350-26356.	4.0	61
264	Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16968-16975.	3.2	61
265	Chiral Protein–Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Analytical Chemistry, 2021, 93, 5277-5283.	3.2	61
266	Residual metallic impurities within carbon nanotubes play a dominant role in supposedly "metal-free― oxygen reduction reactions. Chemical Communications, 2014, 50, 12662-12664.	2.2	60
267	Carbon nanotube disposable detectors in microchip capillary electrophoresis for waterâ€soluble vitamin determination: Analytical possibilities in pharmaceutical quality control. Electrophoresis, 2008, 29, 2997-3004.	1.3	59
268	Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. Analyst, The, 2013, 138, 4885.	1.7	59
269	Graphene oxide nanoribbons exhibit significantly greater toxicity than graphene oxide nanoplatelets. Nanoscale, 2014, 6, 10792-10797.	2.8	59
270	Nitroaromatic explosives detection using electrochemically exfoliated graphene. Scientific Reports, 2016, 6, 33276.	1.6	59

#	Article	IF	CITATIONS
271	Schwarzer Phosphor neu entdeckt: vom Volumenmaterial zu Monoschichten. Angewandte Chemie, 2017, 129, 8164-8185.	1.6	59
272	3D-printed metal electrodes for electrochemical detection of phenols. Applied Materials Today, 2017, 9, 212-219.	2.3	59
273	Metal–Organic Frameworks Based Nano/Micro/Millimeterâ€Sized Selfâ€Propelled Autonomous Machines. Advanced Materials, 2019, 31, e1806530.	11.1	59
274	Interaction of single- and double-stranded DNA with multilayer MXene by fluorescence spectroscopy and molecular dynamics simulations. Chemical Science, 2019, 10, 10010-10017.	3.7	59
275	Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. Lab on A Chip, 2009, 9, 213-218.	3.1	58
276	Macroscopic Selfâ€Propelled Objects. Chemistry - an Asian Journal, 2012, 7, 1994-2002.	1.7	58
277	Tunable Pt–MoS _{<i>x</i>} Hybrid Catalysts for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 8702-8711.	4.0	58
278	Cation-Controlled Electrocatalytical Activity of Transition-Metal Disulfides. ACS Catalysis, 2018, 8, 2774-2781.	5.5	58
279	Breaking Polymer Chains with Selfâ€Propelled Lightâ€Controlled Navigable Hematite Microrobots. Advanced Functional Materials, 2021, 31, 2101510.	7.8	58
280	Magnetotactic Artificial Self-Propelled Nanojets. Langmuir, 2013, 29, 7411-7415.	1.6	57
281	Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting. Journal of Materials Chemistry A, 2020, 8, 1120-1126.	5.2	57
282	Ultrasonically Propelled Micro―and Nanorobots. Advanced Functional Materials, 2022, 32, 2102265.	7.8	57
283	Electrochemistry of a Whole Group of Compounds Affected by Metallic Impurities within Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 21296-21298.	1.5	56
284	Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Advances, 2016, 6, 66884-66892.	1.7	56
285	Graphene Oxide Sorption Capacity toward Elements over the Whole Periodic Table: A Comparative Study. Journal of Physical Chemistry C, 2016, 120, 24203-24212.	1.5	56
286	Origin of exotic ferromagnetic behavior in exfoliated layered transition metal dichalcogenides MoS ₂ and WS ₂ . Nanoscale, 2016, 8, 1960-1967.	2.8	56
287	Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 2066-2073.	3.2	56
288	Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angewandte Chemie, 2017, 129, 10579-10581.	1.6	56

#	Article	IF	CITATIONS
289	Graphitic carbon nitride: Effects of various precursors on the structural, morphological and electrochemical sensing properties. Applied Materials Today, 2017, 8, 150-162.	2.3	56
290	Layered PtTe ₂ Matches Electrocatalytic Performance of Pt/C for Oxygen Reduction Reaction with Significantly Lower Toxicity. ACS Sustainable Chemistry and Engineering, 2018, 6, 7432-7441.	3.2	56
291	Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. CheM, 2020, 6, 867-884.	5.8	56
292	MXene and MoS _{3â^'} <i>_x</i> Coated 3Dâ€Printed Hybrid Electrode for Solid‣tate Asymmetric Supercapacitor. Small Methods, 2021, 5, e2100451.	4.6	56
293	Microchip Capillary Electrophoresis with a Single-Wall Carbon Nanotube/Gold Electrochemical Detector for Determination of Aminophenols and Neurotransmitters. Mikrochimica Acta, 2006, 152, 261-265.	2.5	55
294	Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels. Nanoscale, 2013, 5, 4758.	2.8	55
295	Microfluidics in amino acid analysis. Electrophoresis, 2007, 28, 2113-2124.	1.3	54
296	Impedimetric immunoglobulin G immunosensor based on chemically modified graphenes. Nanoscale, 2012, 4, 921-925.	2.8	54
297	Detection of DNA hybridization on chemically modified graphene platforms. Analyst, The, 2012, 137, 580-583.	1.7	54
298	Selective Removal of Hydroxyl Groups from Graphene Oxide. Chemistry - A European Journal, 2013, 19, 2005-2011.	1.7	54
299	Self-propelled nanojets via template electrodeposition. Nanoscale, 2013, 5, 1319-1324.	2.8	54
300	Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities. Angewandte Chemie - International Edition, 2013, 52, 8685-8688.	7.2	54
301	Towards graphene iodide: iodination of graphite oxide. Nanoscale, 2015, 7, 261-270.	2.8	54
302	Layered rhenium sulfide on free-standing three-dimensional electrodes is highly catalytic for the hydrogen evolution reaction: Experimental and theoretical study. Electrochemistry Communications, 2016, 63, 39-43.	2.3	54
303	3D-Printed COVID-19 immunosensors with electronic readout. Chemical Engineering Journal, 2021, 425, 131433.	6.6	54
304	Impact Electrochemistry of Layered Transition Metal Dichalcogenides. ACS Nano, 2015, 9, 8474-8483.	7.3	53
305	Nanohybrids of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications. Chemistry - A European Journal, 2018, 24, 18-31.	1.7	53
306	A Maze in Plastic Wastes: Autonomous Motile Photocatalytic Microrobots against Microplastics. ACS Applied Materials & Interfaces, 2021, 13, 25102-25110.	4.0	53

#	Article	IF	CITATIONS
307	Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor. Analyst, The, 2005, 130, 971.	1.7	52
308	Friedel–Crafts Acylation on Graphene. Chemistry - an Asian Journal, 2012, 7, 1009-1012.	1.7	52
309	Free-standing electrochemically coated MoS _x based 3D-printed nanocarbon electrode for solid-state supercapacitor application. Nanoscale, 2021, 13, 5744-5756.	2.8	52
310	Active Lightâ€Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Advanced Functional Materials, 2021, 31, 2101178.	7.8	52
311	Introducing dichlorocarbene in graphene. Chemical Communications, 2012, 48, 5376.	2.2	51
312	Electrochemistry at CVD Grown Multilayer Graphene Transferred onto Flexible Substrates. Journal of Physical Chemistry C, 2013, 117, 2053-2058.	1.5	51
313	Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling. Electrochemistry Communications, 2015, 54, 36-40.	2.3	51
314	Coke-derived graphene quantum dots as fluorescence nanoquencher in DNA detection. Applied Materials Today, 2017, 7, 138-143.	2.3	51
315	Layered Noble Metal Dichalcogenides: Tailoring Electrochemical and Catalytic Properties. ACS Applied Materials & Interfaces, 2017, 9, 25587-25599.	4.0	51
316	Black Phosphorus Nanoparticles Potentiate the Anticancer Effect of Oxaliplatin in Ovarian Cancer Cell Line. Advanced Functional Materials, 2017, 27, 1701955.	7.8	51
317	Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry. Nanoscale, 2018, 10, 7298-7303.	2.8	51
318	Thick-Film Electrochemical Detectors for Poly(dimethylsiloxane)-based Microchip Capillary Electrophoresis. Electroanalysis, 2002, 14, 1251-1255.	1.5	50
319	Graphene based nanomaterials as electrochemical detectors in Lab-on-a-chip devices. Electrochemistry Communications, 2011, 13, 517-519.	2.3	50
320	Towards highly electrically conductive and thermally insulating graphene nanocomposites: Al ₂ O ₃ –graphene. RSC Advances, 2014, 4, 7418-7424.	1.7	50
321	Layered Transition-Metal Ditellurides in Electrocatalytic Applications—Contrasting Properties. ACS Catalysis, 2017, 7, 5706-5716.	5.5	50
322	3Dâ€printed Electrodes for Sensing of Biologically Active Molecules. Electroanalysis, 2018, 30, 1319-1326.	1.5	50
323	Stripping Voltammetry with Bismuth Modified Graphite-Epoxy Composite Electrodes. Electroanalysis, 2005, 17, 881-886.	1.5	49
324	The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst, The, 2009, 134, 657.	1.7	49

#	Article	IF	CITATIONS
325	Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature. Nanoscale, 2014, 6, 2153-2160.	2.8	49
326	Mo <i>_x</i> W _{1â^'<i>x</i>} S ₂ Solid Solutions as 3D Electrodes for Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2015, 2, 1500041.	1.9	49
327	Highly Hydrogenated Graphene through Microwave Exfoliation of Graphite Oxide in Hydrogen Plasma: Towards Electrochemical Applications. Chemistry - A European Journal, 2013, 19, 15583-15592.	1.7	48
328	Self-propelled autonomous nanomotors meet microfluidics. Nanoscale, 2016, 8, 17415-17421.	2.8	48
329	Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie - International Edition, 2019, 58, 7551-7557.	7.2	48
330	Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells. Langmuir, 2019, 35, 3176-3182.	1.6	48
331	Swarming of Perovskiteâ€Like Bi ₂ WO ₆ Microrobots Destroy Textile Fibers under Visible Light. Advanced Functional Materials, 2020, 30, 2007073.	7.8	48
332	Large-scale quantification of CVD graphene surface coverage. Nanoscale, 2013, 5, 2379.	2.8	47
333	Marangoni self-propelled capsules in a maze: pollutants â€~̃sense and act' in complex channel environments. Lab on A Chip, 2014, 14, 2818-2823.	3.1	47
334	Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table. ChemPhysChem, 2015, 16, 3527-3531.	1.0	47
335	MAX and MAB Phases: Two-Dimensional Layered Carbide and Boride Nanomaterials for Electrochemical Applications. ACS Applied Nano Materials, 2019, 2, 6010-6021.	2.4	47
336	Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chemical Communications, 2019, 55, 8374-8377.	2.2	47
337	Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon, 2021, 175, 413-419.	5.4	47
338	Graphene platforms for the detection of caffeine in real samples. Analytica Chimica Acta, 2013, 804, 92-97.	2.6	46
339	Concurrent Phosphorus Doping and Reduction of Graphene Oxide. Chemistry - A European Journal, 2014, 20, 4284-4291.	1.7	46
340	Fluorographites (CF _{<i>x</i>}) _{<i>n</i>} Exhibit Improved Heterogeneous Electronâ€Transfer Rates with Increasing Level of Fluorination: Towards the Sensing of Biomolecules. Chemistry - A European Journal, 2014, 20, 6665-6671.	1.7	46
341	Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 982-987.	1.7	46
342	Insight into the Mechanism of the Thermal Reduction of Graphite Oxide: Deuterium-Labeled Graphite Oxide Is the Key. ACS Nano, 2015, 9, 5478-5485.	7.3	46

#	Article	IF	CITATIONS
343	Polyaniline/MoSX Supercapacitor by Electrodeposition. Bulletin of the Chemical Society of Japan, 2017, 90, 847-853.	2.0	46
344	Micro/nanomachines: what is needed for them to become a real force in cancer therapy?. Nanoscale, 2019, 11, 6519-6532.	2.8	46
345	Metal-plated 3D-printed electrode for electrochemical detection of carbohydrates. Electrochemistry Communications, 2020, 120, 106827.	2.3	46
346	Chemically programmable microrobots weaving a web from hormones. Nature Machine Intelligence, 2020, 2, 711-718.	8.3	46
347	Microchip Separation and Electrochemical Detection of Amino Acids and Peptides Following Precolumn Derivatization with Naphthalene-2,3-dicarboxyaldehyde. Electroanalysis, 2003, 15, 862-865.	1.5	45
348	Capacitance of p―and nâ€Doped Graphenes is Dominated by Structural Defects Regardless of the Dopant Type. ChemSusChem, 2014, 7, 1102-1106.	3.6	45
349	Topâ€Down and Bottomâ€Up Approaches in Engineering 1 T Phase Molybdenum Disulfide (MoS ₂): Towards Highly Catalytically Active Materials. Chemistry - A European Journal, 2016, 22, 14336-14341.	1.7	45
350	Synthesis of Carboxylated-Graphenes by the Kolbe–Schmitt Process. ACS Nano, 2017, 11, 1789-1797.	7.3	45
351	Tunable Roomâ€Temperature Synthesis of ReS ₂ Bicatalyst on 3D―and 2Dâ€Printed Electrodes for Photo―and Electrochemical Energy Applications. Advanced Functional Materials, 2020, 30, 1910193.	7.8	45
352	Direct In Vivo Electrochemical Detection of Haemoglobin in Red Blood Cells. Scientific Reports, 2014, 4, 6209.	1.6	44
353	A New Member of the Graphene Family: Graphene Acid. Chemistry - A European Journal, 2016, 22, 17416-17424.	1.7	44
354	Siloxene, Germanane, and Methylgermanane: Functionalized 2D Materials of Group 14 for Electrochemical Applications. Advanced Functional Materials, 2020, 30, 1910186.	7.8	44
355	Graphene Oxides Exhibit Limited Cathodic Potential Window Due to Their Inherent Electroactivity. Journal of Physical Chemistry C, 2011, 115, 17647-17650.	1.5	43
356	Geometric asymmetry driven Janus micromotors. Nanoscale, 2014, 6, 11177-11180.	2.8	43
357	Rational Design of Carboxyl Groups Perpendicularly Attached to a Graphene Sheet: A Platform for Enhanced Biosensing Applications. Chemistry - A European Journal, 2014, 20, 217-222.	1.7	43
358	Bipolar Electrochemical Synthesis of WS ₂ Nanoparticles and Their Application in Magnetoâ€Immunosandwich Assay. Advanced Functional Materials, 2016, 26, 4094-4098.	7.8	43
359	Graphene Nanobubbles Produced by Water Splitting. Nano Letters, 2017, 17, 2833-2838.	4.5	43
360	1Tâ€Phase WS ₂ Proteinâ€Based Biosensor. Advanced Functional Materials, 2017, 27, 1604923.	7.8	43

#	Article	IF	CITATIONS
361	Accounts in 3Dâ€Printed Electrochemical Sensors: Towards Monitoring of Environmental Pollutants. ChemElectroChem, 2020, 7, 3404-3413.	1.7	43
362	3Dâ€Printing to Mitigate COVIDâ€19 Pandemic. Advanced Functional Materials, 2021, 31, 2100450.	7.8	43
363	Microchip flow-injection analysis of trace 2,4,6-trinitrotoluene (TNT) using mercury-amalgam electrochemical detector. Talanta, 2006, 69, 984-987.	2.9	42
364	Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology. Journal of Chromatography A, 2006, 1113, 5-13.	1.8	42
365	Influence of Methyl Substituent Position on Redox Properties of Nitroaromatics Related to 2,4,6â€Trinitrotoluene. Electroanalysis, 2011, 23, 2350-2356.	1.5	42
366	Graphene/carbon nanotube composites not exhibiting synergic effect for supercapacitors: The resulting capacitance being average of capacitance of individual components. Electrochemistry Communications, 2012, 17, 45-47.	2.3	42
367	Oxygenâ€Free Highly Conductive Graphene Papers. Advanced Functional Materials, 2014, 24, 4878-4885.	7.8	42
368	Valence and oxide impurities in MoS ₂ and WS ₂ dramatically change their electrocatalytic activity towards proton reduction. Nanoscale, 2016, 8, 16752-16760.	2.8	42
369	Ball-milled sulfur-doped graphene materials contain metallic impurities originating from ball-milling apparatus: their influence on the catalytic properties. Physical Chemistry Chemical Physics, 2016, 18, 17875-17880.	1.3	42
370	Electrochemical Exfoliation of MoS ₂ Crystal for Hydrogen Electrogeneration. Chemistry - A European Journal, 2018, 24, 18551-18555.	1.7	42
371	Recoverable Bismuth-Based Microrobots: Capture, Transport, and On-Demand Release of Heavy Metals and an Anticancer Drug in Confined Spaces. ACS Applied Materials & Interfaces, 2019, 11, 13359-13369.	4.0	42
372	MXene-Based Flexible Supercapacitors: Influence of an Organic Ionic Conductor Electrolyte on the Performance. ACS Applied Materials & Interfaces, 2020, 12, 53039-53048.	4.0	42
373	Multifunctional Visibleâ€Light Powered Micromotors Based on Semiconducting Sulfur―and Nitrogen ontaining Donor–Acceptor Polymer. Advanced Functional Materials, 2020, 30, 2002701.	7.8	42
374	Trends in analysis of explosives by microchip electrophoresis and conventional CE. Electrophoresis, 2008, 29, 269-273.	1.3	41
375	Detection of biomarkers with graphene nanoplatelets and nanoribbons. Analyst, The, 2014, 139, 1072.	1.7	41
376	Graphene–Amorphous Transitionâ€Metal Chalcogenide (MoS _{<i>x</i>} ,) Tj ETQq0 0 0 rgBT /Overla Evolution Reaction. ChemElectroChem, 2016, 3, 565-571.	ock 10 Tf : 1.7	50 147 Td (W 41
377	Bjerknes Forces in Motion: Longâ€Range Translational Motion and Chiral Directionality Switching in Bubbleâ€Propelled Micromotors via an Ultrasonic Pathway. Advanced Functional Materials, 2018, 28, 1702618.	7.8	41
378	Triazine- and Heptazine-Based Carbon Nitrides: Toxicity. ACS Applied Nano Materials, 2018, 1, 4442-4449.	2.4	41

#	Article	IF	CITATIONS
379	Self-Propelled Autonomous Mg/Pt Janus Micromotor Interaction with Human Cells. Bulletin of the Chemical Society of Japan, 2019, 92, 1754-1758.	2.0	41
380	Materials Electrochemists' Never-Ending Quest for Efficient Electrocatalysts: The Devil Is in the Impurities. ACS Catalysis, 2020, 10, 7087-7092.	5.5	41
381	Enzymeâ€Photocatalyst Tandem Microrobot Powered by Urea for <i>Escherichia coli</i> Biofilm Eradication. Small, 2022, 18, e2106612.	5.2	41
382	Pick up and dispose of pollutants from water via temperature-responsive micellar copolymers on magnetite nanorobots. Nature Communications, 2022, 13, 1026.	5.8	41
383	Spontaneous Coating of Carbon Nanotubes with an Ultrathin Polypyrrole Layer. Chemistry - A European Journal, 2007, 13, 7644-7649.	1.7	40
384	Amorphous Carbon Impurities Play an Active Role in Redox Processes of Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 25281-25284.	1.5	40
385	Graphenes Prepared by Hummers, Staudenmaier and Hofmann Methods for Analysis of TNTâ€Based Nitroaromatic Explosives in Seawater. Electroanalysis, 2012, 24, 2085-2093.	1.5	40
386	Influence of real-world environments on the motion of catalytic bubble-propelled micromotors. Lab on A Chip, 2013, 13, 2937.	3.1	40
387	Electrocatalytic effect of ZnO nanoparticles on reduction of nitroaromatic compounds. Catalysis Science and Technology, 2013, 3, 123-127.	2.1	40
388	pâ€Elementâ€Doped Graphene: Heteroatoms for Electrochemical Enhancement. ChemElectroChem, 2015, 2, 190-199.	1.7	40
389	Electrochemistry of layered metal diborides. Nanoscale, 2018, 10, 11544-11552.	2.8	40
390	Selfâ€Propelled 3Dâ€Printed "Aircraft Carrier―of Lightâ€Powered Smart Micromachines for Largeâ€Volume Nitroaromatic Explosives Removal. Advanced Functional Materials, 2019, 29, 1903872.	7.8	40
391	Chemical Microrobots as Self-Propelled Microbrushes against Dental Biofilm. Cell Reports Physical Science, 2020, 1, 100181.	2.8	40
392	Liquid–Liquid Interface Motion of a Capsule Motor Powered by the Interlayer Marangoni Effect. Journal of Physical Chemistry B, 2012, 116, 10960-10963.	1.2	39
393	Nanoporous Carbon Materials for Electrochemical Sensing. Chemistry - an Asian Journal, 2012, 7, 412-416.	1.7	39
394	Chemical Preparation of Graphene Materials Results in Extensive Unintentional Doping with Heteroatoms and Metals. Chemistry - A European Journal, 2014, 20, 15760-15767.	1.7	39
395	Towards biocompatible nano/microscale machines: self-propelled catalytic nanomotors not exhibiting acute toxicity. Nanoscale, 2014, 6, 2119-2124.	2.8	39
396	Microwave Exfoliation of Graphite Oxides in H ₂ S Plasma for the Synthesis of Sulfur-Doped Graphenes as Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 31849-31855.	4.0	39

#	Article	IF	CITATIONS
397	2D Stacks of MXene Ti ₃ C ₂ and 1Tâ€Phase WS ₂ with Enhanced Capacitive Behavior. ChemElectroChem, 2019, 6, 3982-3986.	1.7	39
398	Selfâ€Propelled Tags for Protein Detection. Advanced Functional Materials, 2020, 30, 1906449.	7.8	39
399	Chemically-modified graphenes for oxidation of DNA bases: analytical parameters. Analyst, The, 2011, 136, 4738.	1.7	38
400	Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. ChemPlusChem, 2013, 78, 395-397.	1.3	38
401	Neutron diffraction as a precise and reliable method for obtaining structural properties of bulk quantities of graphene. Nanoscale, 2014, 6, 13082-13089.	2.8	38
402	Cytotoxicity of Exfoliated Layered Vanadium Dichalcogenides. Chemistry - A European Journal, 2017, 23, 684-690.	1.7	38
403	Morphological Effects and Stabilization of the Metallic 1T Phase in Layered Vâ€; Nbâ€; and Taâ€Doped WSe ₂ for Electrocatalysis. Chemistry - A European Journal, 2018, 24, 3199-3208.	1.7	38
404	Nanorobots Constructed from Nanoclay: Using Nature to Create Selfâ€Propelled Autonomous Nanomachines. Advanced Functional Materials, 2018, 28, 1802762.	7.8	38
405	Positive and Negative Effects of Dopants toward Electrocatalytic Activity of MoS ₂ and WS ₂ : Experiments and Theory. ACS Applied Materials & Interfaces, 2020, 12, 20383-20392.	4.0	38
406	Shape-Controlled Self-Assembly of Light-Powered Microrobots into Ordered Microchains for Cells Transport and Water Remediation. ACS Nano, 2022, 16, 7615-7625.	7.3	38
407	Î ² -CYCLODEXTRIN-MODIFIED MONOLITHIC STATIONARY PHASES FOR CAPILLARY ELECTROCHROMATOGRAPHY AND NANO-HPLC CHIRAL ANALYSIS OF EPHEDRINE AND IBUPROFEN. Journal of Liquid Chromatography and Related Technologies, 2002, 25, 2473-2484.	0.5	37
408	Signal Transducers and Enzyme Cofactors are Susceptible to Oxidation by Nanographite Impurities in Carbon Nanotube Materials. Chemistry - A European Journal, 2011, 17, 5544-5548.	1.7	37
409	Inherent Electrochemistry and Activation of Chemically Modified Graphenes for Electrochemical Applications. Chemistry - an Asian Journal, 2012, 7, 759-770.	1.7	37
410	Carbon fragments are ripped off from graphite oxide sheets during their thermal reduction. New Journal of Chemistry, 2014, 38, 5700-5705.	1.4	37
411	3D Printed Nanocarbon Frameworks for Liâ€lon Battery Cathodes. Advanced Functional Materials, 2021, 31, 2007285.	7.8	37
412	Swarming Magnetic Photoactive Microrobots for Dental Implant Biofilm Eradication. ACS Nano, 2022, 16, 8694-8703.	7.3	37
413	Electrochemical activation of carbon nanotube/polymer composites. Physical Chemistry Chemical Physics, 2009, 11, 182-186.	1.3	36
414	Cytotoxicity of halogenated graphenes. Nanoscale, 2014, 6, 1173-1180.	2.8	36

#	Article	IF	CITATIONS
415	Layered titanium diboride: towards exfoliation and electrochemical applications. Nanoscale, 2015, 7, 12527-12534.	2.8	36
416	Highly selective removal of Ga 3+ ions from Al 3+ /Ga 3+ mixtures using graphite oxide. Carbon, 2015, 89, 121-129.	5.4	36
417	Mycotoxin Aptasensing Amplification by using Inherently Electroactive Grapheneâ€Oxide Nanoplatelet Labels. ChemElectroChem, 2015, 2, 743-747.	1.7	36
418	Self-Propelled Micromotors Monitored by Particle-Electrode Impact Voltammetry. ACS Sensors, 2016, 1, 949-957.	4.0	36
419	Inverse Opal-like Porous MoSe _{<i>x</i>} Films for Hydrogen Evolution Catalysis: Overpotential-Pore Size Dependence. ACS Applied Materials & Interfaces, 2018, 10, 4937-4945.	4.0	36
420	Additive manufacturing of electrochemical interfaces: Simultaneous detection of biomarkers. Applied Materials Today, 2018, 12, 43-50.	2.3	36
421	Lightâ€Driven ZnO Brushâ€Shaped Selfâ€Propelled Micromachines for Nitroaromatic Explosives Decomposition. Small, 2020, 16, e1902944.	5.2	36
422	Dip-coating of MXene and transition metal dichalcogenides on 3D-printed nanocarbon electrodes for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 122, 106890.	2.3	36
423	Towards micromachine intelligence: potential of polymers. Chemical Society Reviews, 2022, 51, 1558-1572.	18.7	36
424	Cytotoxicity Profile of Highly Hydrogenated Graphene. Chemistry - A European Journal, 2014, 20, 6366-6373.	1.7	35
425	A limited anodic and cathodic potential window of MoS ₂ : limitations in electrochemical applications. Nanoscale, 2015, 7, 3126-3129.	2.8	35
426	Plasmonic Selfâ€Propelled Nanomotors for Explosives Detection via Solutionâ€Based Surface Enhanced Raman Scattering. Advanced Functional Materials, 2019, 29, 1903041.	7.8	35
427	Three-dimensionally printed electrochemical systems for biomedical analytical applications. Current Opinion in Electrochemistry, 2019, 14, 133-137.	2.5	35
428	Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction. Applied Materials Today, 2020, 20, 100654.	2.3	35
429	Nano/Microplastics Capture and Degradation by Autonomous Nano/Microrobots: A Perspective. Advanced Functional Materials, 2022, 32, .	7.8	35
430	Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. Journal of Materials Chemistry C, 2014, 2, 856-863.	2.7	34
431	3D-graphene for electrocatalysis of oxygen reduction reaction: Increasing number of layers increases the catalytic effect. Electrochemistry Communications, 2014, 46, 148-151.	2.3	34
432	Fluorographane (C ₁ H _x F _{1â^'xâ^'î´}) _n : synthesis and properties. Chemical Communications, 2015, 51, 5633-5636.	2.2	34

#	Article	IF	CITATIONS
433	Light and Atmosphere Affect the Quasiâ€equilibrium States of Graphite Oxide and Graphene Oxide Powders. Small, 2015, 11, 1266-1272.	5.2	34
434	Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS ₂ for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide. Analytical Chemistry, 2017, 89, 4978-4985.	3.2	34
435	Fluorination of Black Phosphorus—Will Black Phosphorus Burn Down in the Elemental Fluorine?. Advanced Functional Materials, 2018, 28, 1801438.	7.8	34
436	Cytotoxicity of Shear Exfoliated Pnictogen (As, Sb, Bi) Nanosheets. Chemistry - A European Journal, 2019, 25, 2242-2249.	1.7	34
437	Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3Dâ€Printed Electrode. Chemistry - A European Journal, 2020, 26, 15746-15753.	1.7	34
438	Active Anion Delivery by Self-Propelled Microswimmers. ACS Nano, 2020, 14, 3434-3441.	7.3	34
439	MXene-functionalised 3D-printed electrodes for electrochemical capacitors. Electrochemistry Communications, 2021, 124, 106920.	2.3	34
440	Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing. Applied Materials Today, 2022, 26, 101337.	2.3	34
441	Stacked graphene nanofibers doped polypyrrole nanocomposites for electrochemical sensing. Electrochemistry Communications, 2010, 12, 1788-1791.	2.3	33
442	The Structural Stability of Graphene Anticorrosion Coating Materials is Compromised at Low Potentials. Chemistry - A European Journal, 2015, 21, 7896-7901.	1.7	33
443	MoSe ₂ Nanolabels for Electrochemical Immunoassays. Analytical Chemistry, 2016, 88, 12204-12209.	3.2	33
444	2H→1T Phase Engineering of Layered Tantalum Disulfides in Electrocatalysis: Oxygen Reduction Reaction. Chemistry - A European Journal, 2017, 23, 8082-8091.	1.7	33
445	Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties. Physical Chemistry Chemical Physics, 2017, 19, 15914-15923.	1.3	33
446	Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 1999, 393, 141-146.	2.6	32
447	Nanographite Impurities within Carbon Nanotubes are responsible for their Stable and Sensitive Response Toward Electrochemical Oxidation of Phenols. Journal of Physical Chemistry C, 2011, 115, 5530-5534.	1.5	32
448	Complex organic molecules are released during thermal reduction of graphite oxides. Physical Chemistry Chemical Physics, 2013, 15, 9257.	1.3	32
449	Graphenes prepared from multi-walled carbon nanotubes and stacked graphene nanofibers for detection of 2,4,6-trinitrotoluene (TNT) in seawater. Analyst, The, 2013, 138, 1700.	1.7	32
450	Towards Graphane Applications in Security: The Electrochemical Detection of Trinitrotoluene in Seawater on Hydrogenated Graphene. Electroanalysis, 2014, 26, 62-68.	1.5	32

#	Article	IF	CITATIONS
451	Dichlorocarbeneâ€Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small, 2015, 11, 3790-3796.	5.2	32
452	Cytotoxicity of Group 5 Transition Metal Ditellurides (MTe ₂ ; M=V, Nb, Ta). Chemistry - A European Journal, 2018, 24, 206-211.	1.7	32
453	1T-Phase Tungsten Chalcogenides (WS ₂ , WSe ₂ , WTe ₂) Decorated with TiO ₂ Nanoplatelets with Enhanced Electron Transfer Activity for Biosensing Applications. ACS Applied Nano Materials, 2018, 1, 7006-7015.	2.4	32
454	Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chemistry - A European Journal, 2020, 26, 6583-6590.	1.7	32
455	Imaging of Oxygenâ€Containing Groups on Walls of Carbon Nanotubes. Chemistry - an Asian Journal, 2009, 4, 250-253.	1.7	31
456	Regulatory peptides desmopressin and glutathione voltammetric determination on nickel oxide modified electrodes. Electrochemistry Communications, 2011, 13, 963-965.	2.3	31
457	Metallic Impurities are Responsible for Electrocatalytic Behavior of Carbon Nanotubes Towards Sulfides. Chemistry - an Asian Journal, 2011, 6, 2304-2307.	1.7	31
458	Biorecognition on Graphene: Physical, Covalent, and Affinity Immobilization Methods Exhibiting Dramatic Differences. Chemistry - an Asian Journal, 2013, 8, 198-203.	1.7	31
459	Biomarkers Detection on Hydrogenated Graphene Surfaces: Towards Applications of Graphane in Biosensing. Electroanalysis, 2013, 25, 703-705.	1.5	31
460	Purification of carbon nanotubes by high temperature chlorine gas treatment. Physical Chemistry Chemical Physics, 2013, 15, 5615.	1.3	31
461	Toxicity of layered semiconductor chalcogenides: beware of interferences. RSC Advances, 2015, 5, 67485-67492.	1.7	31
462	Emerging mono-elemental 2D nanomaterials for electrochemical sensing applications: From borophene to bismuthene. TrAC - Trends in Analytical Chemistry, 2019, 121, 115696.	5.8	31
463	Functional 2D Germanene Fluorescent Coating of Microrobots for Micromachines Multiplexing. Small, 2020, 16, e1902365.	5.2	31
464	3Dâ€Printed SARSâ€CoVâ€2 RNA Genosensing Microfluidic System. Advanced Materials Technologies, 2022, 7, 2101121.	3.0	31
465	Effects of heterogeneous electronâ€transfer rate on the resolution of electrophoretic separations based on microfluidics with endâ€column electrochemical detection. Electrophoresis, 2009, 30, 3334-3338.	1.3	30
466	Effect of Nitric Acid "Washing―Procedure on Electrochemical Behavior of Carbon Nanotubes and Glassy Carbon μ-Particles. Nanoscale Research Letters, 2010, 5, 846-852.	3.1	30
467	Transition Metalâ€Depleted Graphenes for Electrochemical Applications via Reduction of CO ₂ by Lithium. Small, 2014, 10, 1529-1535.	5.2	30
468	Fluorographenes via thermal exfoliation of graphite oxide in SF ₆ , SF ₄ and MoF ₆ atmospheres. Journal of Materials Chemistry C, 2014, 2, 5198-5207.	2.7	30

#	Article	IF	CITATIONS
469	Nanosized graphane (C ₁ H _{1.14}) _n by hydrogenation of carbon nanofibers by Birch reduction method. RSC Advances, 2016, 6, 6475-6485.	1.7	30
470	Remarkable electrochemical properties of electrochemically reduced graphene oxide towards oxygen reduction reaction are caused by residual metal-based impurities. Electrochemistry Communications, 2016, 62, 17-20.	2.3	30
471	Fluorographene Modified by Grignard Reagents: A Broad Range of Functional Nanomaterials. Chemistry - A European Journal, 2017, 23, 1956-1964.	1.7	30
472	TaS ₃ Nanofibers: Layered Trichalcogenide for High-Performance Electronic and Sensing Devices. ACS Nano, 2018, 12, 464-473.	7.3	30
473	A highly sensitive room temperature humidity sensor based on 2D-WS2 nanosheets. FlatChem, 2018, 9, 21-26.	2.8	30
474	Functionalized 2D Germanene and Silicene Enzymatic System. Advanced Functional Materials, 2021, 31, 2011125.	7.8	30
475	Swarming Aqua Sperm Micromotors for Active Bacterial Biofilms Removal in Confined Spaces. Advanced Science, 2021, 8, e2101301.	5.6	30
476	Determination of cyclodextrins and their derivatives by capillary electrophoresis with indirect UV and conductivity detection. Fresenius' Journal of Analytical Chemistry, 2001, 369, 666-669.	1.5	29
477	Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition. Nanoscale, 2013, 5, 7844.	2.8	29
478	High-resolution impedance spectroscopy for graphene characterization. Electrochemistry Communications, 2013, 26, 52-54.	2.3	29
479	Iridium―and Osmiumâ€decorated Reduced Graphenes as Promising Catalysts for Hydrogen Evolution. ChemPhysChem, 2015, 16, 1898-1905.	1.0	29
480	Layered Postâ€Transitionâ€Metal Dichalcogenides (Xâ^'Mâ^'Mâ^'X) and Their Properties. Chemistry - A European Journal, 2016, 22, 18810-18816.	1.7	29
481	Fast Synthesis of Highly Oxidized Graphene Oxide. ChemistrySelect, 2017, 2, 9000-9006.	0.7	29
482	Composition-Graded MoWS _{<i>x</i>} Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry. ACS Applied Materials & Interfaces, 2017, 9, 41955-41964.	4.0	29
483	Metallic impurities in black phosphorus nanoflakes prepared by different synthetic routes. Nanoscale, 2018, 10, 1540-1546.	2.8	29
484	Lightâ€Driven Micromotors to Dissociate Protein Aggregates That Cause Neurodegenerative Diseases. Advanced Functional Materials, 2022, 32, 2106699.	7.8	29
485	Hierarchical Atomic Layer Deposited V ₂ O ₅ on 3D Printed Nanocarbon Electrodes for Highâ€Performance Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2105572.	5.2	29
486	Carbon nanotube—chalcogenide glass composite. Journal of Solid State Chemistry, 2010, 183, 144-149.	1.4	28

#	Article	IF	CITATIONS
487	Nanographite Impurities of Singleâ€Walled and Doubleâ€Walled Carbon Nanotubes Are Responsible for the Observed "Electrocatalytic―Effect towards the Reduction of Azo Groups. Chemistry - an Asian Journal, 2011, 6, 804-807.	1.7	28
488	Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Physical Chemistry Chemical Physics, 2012, 14, 12794.	1.3	28
489	Intrinsic electrochemical performance and precise control of surface porosity of graphene-modified electrodes using the drop-casting technique. Electrochemistry Communications, 2015, 59, 86-90.	2.3	28
490	Influence of pH on the Motion of Catalytic Janus Particles and Tubular Bubbleâ€Propelled Micromotors. Chemistry - A European Journal, 2016, 22, 355-360.	1.7	28
491	Exfoliated transition metal dichalcogenide (MX2; M = Mo, W; X = S, Se, Te) nanosheets and their composites with polyaniline nanofibers for electrochemical capacitors. Applied Materials Today, 2019, 16, 280-289.	2.3	28
492	Nanomotor tracking experiments at the edge of reproducibility. Scientific Reports, 2019, 9, 13222.	1.6	28
493	Atomic Layer Deposition as a General Method Turns any 3Dâ€Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty. Advanced Energy Materials, 2019, 9, 1900994.	10.2	28
494	Recyclable nanographene-based micromachines for the on-the-fly capture of nitroaromatic explosives. Nanoscale, 2019, 11, 8825-8834.	2.8	28
495	3D-printed electrodes for the detection of mycotoxins in food. Electrochemistry Communications, 2020, 115, 106735.	2.3	28
496	Reconstructed Bismuthâ€Based Metalâ^'Organic Framework Nanofibers for Selective CO ₂ â€ŧoâ€Formate Conversion: Morphology Engineering. ChemSusChem, 2021, 14, 3402-3412.	3.6	28
497	Atomic Layer Deposition of Electrocatalytic Insulator Al ₂ O ₃ on Three-Dimensional Printed Nanocarbons. ACS Nano, 2021, 15, 686-697.	7.3	28
498	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	2.8	28
499	Bioavailability of Metallic Impurities in Carbon Nanotubes Is Greatly Enhanced by Ultrasonication. Chemistry - A European Journal, 2012, 18, 11593-11596.	1.7	27
500	Chemically Modified Graphenes as Detectors in Labâ€onâ€Chip Device. Electroanalysis, 2013, 25, 945-950.	1.5	27
501	Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles. Chemical Communications, 2013, 49, 5147.	2.2	27
502	Corrosion of self-propelled catalytic microengines. Chemical Communications, 2013, 49, 9125.	2.2	27
503	Blood Proteins Strongly Reduce the Mobility of Artificial Selfâ€Propelled Micromotors. Chemistry - A European Journal, 2013, 19, 16756-16759.	1.7	27
504	Tissue cell assisted fabrication of tubular catalytic platinum microengines. Nanoscale, 2014, 6, 11359-11363.	2.8	27

#	Article	IF	CITATIONS
505	Impact electrochemistry of individual molybdenum nanoparticles. Electrochemistry Communications, 2015, 56, 16-19.	2.3	27
506	Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electronâ€Transfer Properties. Angewandte Chemie, 2016, 128, 3443-3447.	1.6	27
507	Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem, 2019, 6, 229-234.	1.7	27
508	Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chemical Society Reviews, 2020, 49, 7819-7844.	18.7	27
509	Biocatalytic Micro―and Nanomotors. Chemistry - A European Journal, 2020, 26, 11085-11092.	1.7	27
510	Realâ€Time Biomonitoring Device Based on 2D Black Phosphorus and Polyaniline Nanocomposite Flexible Supercapacitors. Small, 2021, 17, e2102337.	5.2	27
511	Mesomeric Effects of Graphene Modified with Diazonium Salts: Substituent Type and Position Influence its Properties. Chemistry - A European Journal, 2015, 21, 17728-17738.	1.7	26
512	Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry. Chemistry - A European Journal, 2015, 21, 16828-16838.	1.7	26
513	Simple Synthesis of Fluorinated Graphene: Thermal Exfoliation of Fluorographite. Chemistry - A European Journal, 2016, 22, 17696-17703.	1.7	26
514	Thin, Highâ€Flux, Selfâ€Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures. Chemistry - A European Journal, 2017, 23, 11416-11422.	1.7	26
515	The Covalent Functionalization of Layered Black Phosphorus by Nucleophilic Reagents. Angewandte Chemie, 2017, 129, 10023-10028.	1.6	26
516	Oneâ€Step Synthesis of B/N Coâ€doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities. Chemistry - A European Journal, 2018, 24, 928-936.	1.7	26
517	Graphene Oxide: Carbocatalyst or Reagent?. Angewandte Chemie - International Edition, 2018, 57, 16713-16715.	7.2	26
518	Light-driven Ti ₃ C ₂ MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. Journal of Materials Chemistry A, 2021, 9, 14904-14910.	5.2	26
519	Chiral 3Dâ€printed Bioelectrodes. Advanced Functional Materials, 2021, 31, 2010608.	7.8	26
520	Electrocatalytic activity of layered MAX phases for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 125, 106977.	2.3	26
521	3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer. Small, 2021, 17, e2101233.	5.2	26
522	Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. Small, 2021, 17, e2102088.	5.2	26

#	Article	IF	CITATIONS
523	Smart Energy Bricks: Ti ₃ C ₂ @Polymer Electrochemical Energy Storage inside Bricks by 3D Printing. Advanced Functional Materials, 2021, 31, 2106990.	7.8	26
524	Lightâ€Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small, 2022, 18, e2200708.	5.2	26
525	Investigation of the Mechanism of Adsorption of β-Nicotinamide Adenine Dinucleotide on Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2010, 1, 122-125.	2.1	25
526	Redoxâ€Active Nickel in Carbon Nanotubes and Its Direct Determination. Chemistry - A European Journal, 2012, 18, 3338-3344.	1.7	25
527	Mycotoxins: Simultaneous Detection of Zearalenone and Citrinin by Voltammetry on Edge Plane Pyrolytic Graphite Electrode. Electroanalysis, 2014, 26, 1901-1904.	1.5	25
528	Regeneration of a Conjugated sp ² Graphene System through Selective Defunctionalization of Epoxides by Using a Proven Synthetic Chemistry Mechanism. Chemistry - A European Journal, 2014, 20, 1871-1877.	1.7	25
529	Iridium atalystâ€Based Autonomous Bubbleâ€Propelled Graphene Micromotors with Ultralow Catalyst Loading. Chemistry - A European Journal, 2014, 20, 14946-14950.	1.7	25
530	High temperature superconducting materials as bi-functional catalysts for hydrogen evolution and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 8346-8352.	5.2	25
531	Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure. Scientific Reports, 2016, 6, 33046.	1.6	25
532	Improving the Analytical Performance of Graphene Oxide towards the Assessment of Polyphenols. Chemistry - A European Journal, 2016, 22, 3830-3834.	1.7	25
533	Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?. Angewandte Chemie - International Edition, 2016, 55, 11965-11969.	7.2	25
534	Strong dependence of fluorescence quenching on the transition metal in layered transition metal dichalcogenide nanoflakes for nucleic acid detection. Analyst, The, 2016, 141, 4654-4658.	1.7	25
535	The effect of varying solvents for MoS ₂ treatment on its catalytic efficiencies for HER and ORR. Physical Chemistry Chemical Physics, 2017, 19, 6610-6619.	1.3	25
536	Microwave irradiated N- and B,Cl-doped graphene: Oxidation method has strong influence on capacitive behavior. Applied Materials Today, 2017, 9, 204-211.	2.3	25
537	MoSe ₂ Dispersed in Stabilizing Surfactant Media: Effect of the Surfactant Type and Concentration on Electron Transfer and Catalytic Properties. ACS Applied Materials & Interfaces, 2018, 10, 17820-17826.	4.0	25
538	Chemotactic Micro―and Nanodevices. Angewandte Chemie - International Edition, 2019, 58, 2190-2196.	7.2	25
539	Two-Dimensional Functionalized Germananes as Photoelectrocatalysts. ACS Nano, 2021, 15, 11681-11693.	7.3	25
540	Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for	7.2	25

⁵⁴⁰ "Enantiorecognitionâ€onâ€theâ€Fly― Angewandte Chemie - International Edition, 2022, 61, e202116090. ^{7.2} ²⁸

#	Article	lF	CITATIONS
541	Flexible wearable MXene Ti3C2-Based power patch running on sweat. Biosensors and Bioelectronics, 2022, 205, 114092.	5.3	25
542	Enhanced diffusion of pollutants by self-propulsion. Physical Chemistry Chemical Physics, 2011, 13, 12755.	1.3	24
543	Carbon nanotubes can exhibit negative effects in electroanalysis due to presence of nanographite impurities. Electrochemistry Communications, 2011, 13, 426-428.	2.3	24
544	Nanographitic impurities are responsible for electrocatalytic activity of carbon nanotubes towards oxidation of carbamazepine. Electrochemistry Communications, 2011, 13, 781-784.	2.3	24
545	Gold Nanospacers Greatly Enhance the Capacitance of Electrochemically Reduced Graphene. ChemPlusChem, 2012, 77, 71-73.	1.3	24
546	The Inherent Electrochemistry of Nickel/Nickelâ€Oxide Nanoparticles. Chemistry - an Asian Journal, 2012, 7, 702-706.	1.7	24
547	Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Physical Chemistry Chemical Physics, 2013, 15, 17277.	1.3	24
548	Fate of silver nanoparticles in natural waters; integrative use of conventional and electrochemical analytical techniques. RSC Advances, 2014, 4, 5006.	1.7	24
549	Impact electrochemistry on screen-printed electrodes for the detection of monodispersed silver nanoparticles of sizes 10–107 nm. Physical Chemistry Chemical Physics, 2016, 18, 28183-28188.	1.3	24
550	Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide. Chemistry - A European Journal, 2017, 23, 6432-6440.	1.7	24
551	WSe ₂ nanoparticles with enhanced hydrogen evolution reaction prepared by bipolar electrochemistry: application in competitive magneto-immunoassay. Nanoscale, 2018, 10, 23149-23156.	2.8	24
552	Cytotoxicity of layered metal phosphorus chalcogenides (MPXY) nanoflakes; FePS3, CoPS3, NiPS3. FlatChem, 2018, 12, 1-9.	2.8	24
553	Antimony Chalcogenide van der Waals Nanostructures for Energy Conversion and Storage. ACS Sustainable Chemistry and Engineering, 2019, 7, 15790-15798.	3.2	24
554	MoS ₂ versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale, 2019, 11, 9888-9895.	2.8	24
555	Microrobots in Brewery: Dual Magnetic/Lightâ€Powered Hybrid Microrobots for Preventing Microbial Contamination in Beer. Chemistry - A European Journal, 2020, 26, 3039-3043.	1.7	24
556	Oxygen evolution catalysts under proton exchange membrane conditions in a conventional three electrode cell <i>vs.</i> electrolyser device: a comparison study and a 3D-printed electrolyser for academic labs. Journal of Materials Chemistry A, 2021, 9, 9113-9123.	5.2	24
557	Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents. Analytical Chemistry, 2002, 74, 1187-91.	3.2	24
558	Carbon nanotube/polysulfone soft composites: preparation, characterization and application for electrochemical sensing of biomarkers. Physical Chemistry Chemical Physics, 2009, 11, 7721.	1.3	23

#	Article	IF	CITATIONS
559	Hydroquinone Electrochemistry on Carbon Nanotubes is Accelerated by Nanographite Impurities. Chemistry - an Asian Journal, 2011, 6, 1019-1021.	1.7	23
560	Number of graphene layers exhibiting an influence on oxidation of DNA bases: Analytical parameters. Analytica Chimica Acta, 2012, 711, 29-31.	2.6	23
561	Graphene Sheet Orientation of Parent Material Exhibits Dramatic Influence on Graphene Properties. Chemistry - an Asian Journal, 2012, 7, 2367-2372.	1.7	23
562	Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality?. Angewandte Chemie, 2016, 128, 12144-12148.	1.6	23
563	Cytotoxicity of phosphorus allotropes (black, violet, red). Applied Materials Today, 2018, 13, 310-319.	2.3	23
564	Covalent Functionalization of Exfoliated Arsenic with Chlorocarbene. Angewandte Chemie - International Edition, 2018, 57, 14837-14840.	7.2	23
565	Low-temperature synthesis and electrocatalytic application of large-area PtTe ₂ thin films. Nanotechnology, 2020, 31, 375601.	1.3	23
566	Doping and Decorating 2D Materials for Biosensing: Benefits and Drawbacks. Advanced Functional Materials, 2021, 31, 2102555.	7.8	23
567	Plasmonic-magnetic nanorobots for SARS-CoV-2 RNA detection through electronic readout. Applied Materials Today, 2022, 27, 101402.	2.3	23
568	Rapid, Sensitive, and Label-Free Impedimetric Detection of a Single-Nucleotide Polymorphism Correlated to Kidney Disease. Analytical Chemistry, 2010, 82, 3772-3779.	3.2	22
569	Reynolds numbers influence the directionality of self-propelled microjet engines in the 10â^'4 regime. Nanoscale, 2013, 5, 7277.	2.8	22
570	Clean room-free rapid fabrication of roll-up self-powered catalytic microengines. Journal of Materials Chemistry A, 2014, 2, 1219-1223.	5.2	22
571	Assessments of Surface Coverage after Nanomaterials are Drop Cast onto Electrodes for Electroanalytical Applications. ChemElectroChem, 2015, 2, 1003-1009.	1.7	22
572	Soâ€Called "Metalâ€Free―Oxygen Reduction at Graphene Nanoribbons is in fact Metal Driven. ChemCatChem, 2015, 7, 1650-1654.	1.8	22
573	Functionalization of Hydrogenated Graphene: Transitionâ€Metalâ€Catalyzed Crossâ€Coupling Reactions of Allylic Câ^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 10751-10754.	7.2	22
574	Phosphorus and Halogen Coâ€Doped Graphene Materials and their Electrochemistry. Chemistry - A European Journal, 2016, 22, 15444-15450.	1.7	22
575	Universal Method for Largeâ€5cale Synthesis of Layered Transition Metal Dichalcogenides. Chemistry - A European Journal, 2017, 23, 10177-10186.	1.7	22
576	Polymer platforms for micro- and nanomotor fabrication. Nanoscale, 2018, 10, 7332-7342.	2.8	22

#	Article	IF	CITATIONS
577	Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides. Nanoscale, 2019, 11, 15770-15782.	2.8	22
578	Binary Phosphorene Redox Behavior in Oxidoreductase Enzymatic Systems. ACS Nano, 2019, 13, 13217-13224.	7.3	22
579	Smartdust 3Dâ€Printed Grapheneâ€Based Al/Ga Robots for Photocatalytic Degradation of Explosives. Small, 2020, 16, 2002111.	5.2	22
580	Sixâ€Degreeâ€ofâ€Freedom Steerable Visibleâ€Lightâ€Driven Microsubmarines Using Water as a Fuel: Application for Explosives Decontamination. Small, 2021, 17, e2100294.	¹ 5.2	22
581	Photoâ€Fenton Degradation of Nitroaromatic Explosives by Lightâ€Powered Hematite Microrobots: When Higher Speed Is Not What We Go For. Small Methods, 2021, 5, e2100617.	4.6	22
582	Molybdenum metallic nanoparticle detection via differential pulse voltammetry. Electrochemistry Communications, 2011, 13, 203-204.	2.3	21
583	Graphane electrochemistry: Electron transfer at hydrogenated graphenes. Electrochemistry Communications, 2012, 25, 58-61.	2.3	21
584	Nanographite Impurities in Carbon Nanotubes: Their Influence on the Oxidation of Insulin, Nitric Oxide, and Extracellular Thiols. Chemistry - A European Journal, 2012, 18, 1401-1407.	1.7	21
585	Highly selective uptake of Ba ²⁺ and Sr ²⁺ ions by graphene oxide from mixtures of IIA elements. RSC Advances, 2014, 4, 26673-26676.	1.7	21
586	Fine tuning of graphene properties by modification with aryl halogens. Nanoscale, 2016, 8, 1493-1502.	2.8	21
587	Selective Bromination of Graphene Oxide by the Hunsdiecker Reaction. Chemistry - A European Journal, 2017, 23, 10473-10479.	1.7	21
588	Platinum–Halloysite Nanoclay Nanojets as Sensitive and Selective Mobile Nanosensors for Mercury Detection. Advanced Materials Technologies, 2019, 4, 1800502.	3.0	21
589	Electrochemically driven multi-material 3D-printing. Applied Materials Today, 2020, 18, 100530.	2.3	21
590	Atomic layer deposition of photoelectrocatalytic material on 3D-printed nanocarbon structures. Journal of Materials Chemistry A, 2021, 9, 11405-11414.	5.2	21
591	Biotemplating of Metal–Organic Framework Nanocrystals for Applications in Small‧cale Robotics. Advanced Functional Materials, 2022, 32, .	7.8	21
592	Determination of cyclodextrin content using periodate oxidation by capillary electrophoresis. Journal of Chromatography A, 2000, 891, 201-206.	1.8	20
593	Metal-based impurities in graphenes: application for electroanalysis. Analyst, The, 2012, 137, 2039.	1.7	20
594	Carbonaceous Impurities in Carbon Nanotubes are Responsible for Accelerated Electrochemistry of Cytochrome c. Analytical Chemistry, 2013, 85, 6195-6197.	3.2	20

#	Article	IF	CITATIONS
595	Facile labelling of graphene oxide for superior capacitive energy storage and fluorescence applications. Physical Chemistry Chemical Physics, 2016, 18, 9673-9681.	1.3	20
596	Near‣toichiometric Bulk Graphane from Halogenated Graphenes (X = Cl/Br/I) by the Birch Reduction for High Density Energy Storage. Advanced Functional Materials, 2017, 27, 1605797.	7.8	20
597	Electrosynthesis of Bifunctional WS _{3â^'<i>x</i>} /Reduced Graphene Oxide Hybrid for Hydrogen Evolution Reaction and Oxygen Reduction Reaction Electrocatalysis. Chemistry - A European Journal, 2017, 23, 8510-8519.	1.7	20
598	The Origin of MoS ₂ Significantly Influences Its Performance for the Hydrogen Evolution Reaction due to Differences in Phase Purity. Chemistry - A European Journal, 2017, 23, 3169-3177.	1.7	20
599	Black-phosphorus-enhanced bubble-propelled autonomous catalytic microjets. Applied Materials Today, 2017, 9, 289-291.	2.3	20
600	In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorganic Chemistry, 2019, 58, 10227-10238.	1.9	20
601	Electrochemistry of Layered Semiconducting A ^{III} B ^{VI} Chalcogenides: Indium Monochalcogenides (InS, InSe, InTe). ChemCatChem, 2019, 11, 2634-2642.	1.8	20
602	Layered Crystalline and Amorphous Platinum Disulfide (PtS ₂): Contrasting Electrochemistry. Chemistry - A European Journal, 2019, 25, 7330-7338.	1.7	20
603	Fully metallic copper 3D-printed electrodes via sintering for electrocatalytic biosensing. Applied Materials Today, 2021, 25, 101253.	2.3	20
604	Redox Protein Noncovalent Functionalization of Double-Wall Carbon Nanotubes: Electrochemical Binder-less Glucose Biosensor. Journal of Nanoscience and Nanotechnology, 2007, 7, 3590-3595.	0.9	19
605	Nanoprecise Spontaneous Coating of Carbon Nanotubes with a Europium Hydroxide Layer. Chemistry of Materials, 2007, 19, 6513-6517.	3.2	19
606	Haemoglobin electrochemical detection on various reduced graphene surfaces: well-defined glassy carbon electrode outperforms the graphenoids. RSC Advances, 2014, 4, 8050.	1.7	19
607	Selective Nitrogen Functionalization of Graphene by Buchererâ€īype Reaction. Chemistry - A European Journal, 2015, 21, 8090-8095.	1.7	19
608	Definitive Insight into the Graphite Oxide Reduction Mechanism by Deuterium Labeling. ChemPlusChem, 2015, 80, 1399-1407.	1.3	19
609	The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification. Nanoscale, 2015, 7, 9040-9045.	2.8	19
610	Surface properties of MoS ₂ probed by inverse gas chromatography and their impact on electrocatalytic properties. Nanoscale, 2017, 9, 19236-19244.	2.8	19
611	In vitro cytotoxicity of covalently protected layered molybdenum disulfide. Applied Materials Today, 2018, 11, 200-206.	2.3	19
612	Black Phosphorus Synthesis Path Strongly Influences Its Delamination, Chemical Properties and Electrochemical Performance. ACS Applied Energy Materials, 2018, 1, 503-509.	2.5	19

#	Article	IF	CITATIONS
613	Catalytic hydrogen evolution reaction on "metal-free―graphene: key role of metallic impurities. Nanoscale, 2019, 11, 11083-11085.	2.8	19
614	Niobium-doped TiS2: Formation of TiS3 nanobelts and their effects in enzymatic biosensors. Biosensors and Bioelectronics, 2020, 155, 112114.	5.3	19
615	Rhenium Doping of Layered Transition-Metal Diselenides Triggers Enhancement of Photoelectrochemical Activity. ACS Nano, 2021, 15, 2374-2385.	7.3	19
616	Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation. Nanotechnology, 2006, 17, 2553-2559.	1.3	18
617	Structures of inclusion complexes of halogenbenzoic acids and α-cyclodextrin based on AM1 calculations. Journal of Molecular Modeling, 2006, 12, 799-803.	0.8	18
618	Could Carbonaceous Impurities in Reduced Graphenes be Responsible for Some of Their Extraordinary Electrocatalytic Activities?. Chemistry - an Asian Journal, 2013, 8, 1200-1204.	1.7	18
619	Cytotoxicity of fluorographene. RSC Advances, 2015, 5, 107158-107165.	1.7	18
620	Impact Electrochemistry: Detection of Graphene Nanosheets Labeled with Metal Nanoparticles through Oxygen Reduction Mediation. ChemPhysChem, 2016, 17, 2096-2099.	1.0	18
621	Detecting the complex motion of self-propelled micromotors in microchannels by electrochemistry. RSC Advances, 2016, 6, 99977-99982.	1.7	18
622	Anti-MoS ₂ Nanostructures: Tl ₂ S and Its Electrochemical and Electronic Properties. ACS Nano, 2016, 10, 112-123.	7.3	18
623	Layered franckeite and teallite intrinsic heterostructures: shear exfoliation and electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 16590-16599.	5.2	18
624	Micromotors as "Motherships― A Concept for the Transport, Delivery, and Enzymatic Release of Molecular Cargo via Nanoparticles. Langmuir, 2019, 35, 10618-10624.	1.6	18
625	Exfoliation of Calcium Germanide by Alkyl Halides. Chemistry of Materials, 2019, 31, 10126-10134.	3.2	18
626	Black Phosphorus Cytotoxicity Assessments Pitfalls: Advantages and Disadvantages of Metabolic and Morphological Assays. Chemistry - A European Journal, 2019, 25, 349-360.	1.7	18
627	2D MoS2/carbon/polylactic acid filament for 3D printing: Photo and electrochemical energy conversion and storage. Applied Materials Today, 2022, 26, 101301.	2.3	18
628	Micromachines for Microplastics Treatment. ACS Nanoscience Au, 2022, 2, 225-232.	2.0	18
629	Shape Engineering of TiO ₂ Microrobots for "Onâ€ŧheâ€Fly―Optical Brake. Small, 2022, 18, e2106271.	5.2	18
630	Phaseâ€Inversion Method for Incorporation of Metal Nanoparticles into Carbonâ€Nanotube/Polymer Composites. Small, 2009, 5, 795-799.	5.2	17

#	Article	IF	CITATIONS
631	Nanogold Spacing of Stacked Graphene Nanofibers for Supercapacitors. Electroanalysis, 2011, 23, 858-861.	1.5	17
632	Direct voltammetry of colloidal graphene oxides. Electrochemistry Communications, 2014, 43, 87-90.	2.3	17
633	Sulfur poisoning of emergent and current electrocatalysts: vulnerability of MoS ₂ , and direct correlation to Pt hydrogen evolution reaction kinetics. Nanoscale, 2015, 7, 8879-8883.	2.8	17
634	Electrochemical Delamination and Chemical Etching of Chemical Vapor Deposition Graphene: Contrasting Properties. Journal of Physical Chemistry C, 2016, 120, 4682-4690.	1.5	17
635	Germanane synthesis with simultaneous covalent functionalization: towards highly functionalized fluorescent germananes. Nanoscale, 2019, 11, 19327-19333.	2.8	17
636	Lightâ€Driven Sandwich ZnO/TiO ₂ /Pt Janus Micromotors: Schottky Barrier Suppression by Addition of TiO ₂ Atomic Interface Layers into ZnO/Pt Micromachines Leading to Enhanced Fuelâ€Free Propulsion. Small Methods, 2019, 3, 1900258.	4.6	17
637	Micro―and Nanorobots Meet DNA. Advanced Functional Materials, 2022, 32, .	7.8	17
638	Microchip electrophoresis with wall-jet electrochemical detector: Influence of detection potential upon resolution of solutes. Electrophoresis, 2006, 27, 5068-5072.	1.3	16
639	Organically modified sols as pseudostationary phases for microchip electrophoresis. Talanta, 2007, 72, 711-715.	2.9	16
640	Impurities within carbon nanotubes govern the electrochemical oxidation of substituted hydrazines. Physical Chemistry Chemical Physics, 2011, 13, 10818.	1.3	16
641	Electroanalytical parameters of carbon nanotubes are inferior with respect to well defined surfaces of glassy carbon and EPPG. Electrochemistry Communications, 2011, 13, 213-216.	2.3	16
642	Stripping voltammetry at chemically modified graphenes. RSC Advances, 2012, 2, 6068.	1.7	16
643	Surfactants used for dispersion of graphenes exhibit strong influence on electrochemical impedance spectroscopic response. Electrochemistry Communications, 2012, 16, 19-21.	2.3	16
644	Detection of silver nanoparticles on a <scp>l</scp> abâ€onâ€chip platform. Electrophoresis, 2013, 34, 2007-2010.	1.3	16
645	Electrochemical tuning of oxygen-containing groups on graphene oxides: towards control of the performance for the analysis of biomarkers. Physical Chemistry Chemical Physics, 2014, 16, 12178-12182.	1.3	16
646	Electrochemistry of Layered Graphitic Carbon Nitride Synthesised from Various Precursors: Searching for Catalytic Effects. ChemPhysChem, 2016, 17, 481-488.	1.0	16
647	Ultrapure Molybdenum Disulfide Shows Enhanced Catalysis for Hydrogen Evolution over Impuritiesâ€Đoped Counterpart. ChemCatChem, 2017, 9, 1168-1171.	1.8	16
648	Boron and Nitrogen Doped Graphene <i>via</i> Microwave Exfoliation for Simultaneous Electrochemical Detection of Ascorbic Acid, Dopamine and Uric Acid. Electroanalysis, 2017, 29, 45-50.	1.5	16

#	Article	IF	CITATIONS
649	A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chemical Communications, 2020, 56, 7909-7912.	2.2	16
650	Multiresponsive 2D Ti ₃ C ₂ T _{<i>x</i>} MXene <i>via</i> Implanting Molecular Properties. ACS Nano, 2021, 15, 10067-10075.	7.3	16
651	Efficient Protein Transfection by Swarms of Chemically Powered Plasmonic Virus-Sized Nanorobots. ACS Nano, 2021, 15, 12899-12910.	7.3	16
652	Nickel Sulfide Microrockets as Selfâ€Propelled Energy Storage Devices to Power Electronic Circuits "Onâ€Demandâ€: Small Methods, 2021, 5, e2100511.	4.6	16
653	Surfactants show both large positive and negative effects on observed electron transfer rates at thermally reduced graphenes. Electrochemistry Communications, 2012, 22, 105-108.	2.3	15
654	Definitive proof of graphene hydrogenation by Clemmensen reduction: use of deuterium labeling. Nanoscale, 2015, 7, 10535-10543.	2.8	15
655	Cloisite Microrobots as Self-Propelling Cleaners for Fast and Efficient Removal of Improvised Organophosphate Nerve Agents. ACS Applied Materials & Interfaces, 2019, 11, 31832-31843.	4.0	15
656	ReS ₂ : A High-Rate Pseudocapacitive Energy Storage Material. ACS Applied Energy Materials, 2020, 3, 10261-10269.	2.5	15
657	Boron and nitrogen dopants in graphene have opposite effects on the electrochemical detection of explosive nitroaromatic compounds. Electrochemistry Communications, 2020, 112, 106660.	2.3	15
658	Metal–organic-frameworks on 3D-printed electrodes: <i>in situ</i> electrochemical transformation towards the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3732-3738.	2.5	15
659	Bipolar Electrochemistry Exfoliation of Layered Metal Chalcogenides Sb ₂ S ₃ and Bi ₂ S ₃ and their Hydrogen Evolution Applications. Chemistry - A European Journal, 2020, 26, 6479-6483.	1.7	15
660	Local electrochemical activity of transition metal dichalcogenides and their heterojunctions on 3D-printed nanocarbon surfaces. Nanoscale, 2021, 13, 5324-5332.	2.8	15
661	On the Origin of the Solid-State Thermochromism and Thermal Fatigue of Polycyclic Overcrowded Enes. Journal of Physical Chemistry A, 2011, 115, 8563-8570.	1.1	14
662	Nanoporous carbon as a sensing platform for DNA detection: The use of impedance spectroscopy for hairpin-DNA based assay. RSC Advances, 2012, 2, 1021-1024.	1.7	14
663	Towards electrochemical purification of chemically reduced graphene oxide from redox accessible impurities. Physical Chemistry Chemical Physics, 2014, 16, 7058-7065.	1.3	14
664	CVD graphene based immunosensor. RSC Advances, 2014, 4, 23952-23956.	1.7	14
665	Evaluation of the Sorbent Properties of Single―and Multiwalled Carbon Nanotubes for Volatile Organic Compounds through Thermal Desorption–Gas Chromatography/Mass Spectrometry. ChemPlusChem, 2015, 80, 1279-1287.	1.3	14
666	Electrochemical Fluorographane: Hybrid Electrocatalysis of Biomarkers, Hydrogen Evolution, and Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 16474-16478.	1.7	14

#	Article	IF	CITATIONS
667	Transitional Metal/Chalcogen Dependant Interactions of Hairpin DNA with Transition Metal Dichalcogenides, MX ₂ . ChemPhysChem, 2015, 16, 2304-2306.	1.0	14
668	Use of deuterium labelling—evidence of graphene hydrogenation by reduction of graphite oxide using aluminium in sodium hydroxide. RSC Advances, 2015, 5, 18733-18739.	1.7	14
669	Nanostructured MoS ₂ Nanorose/Graphene Nanoplatelet Hybrids for Electrocatalysis. Chemistry - A European Journal, 2016, 22, 5969-5975.	1.7	14
670	Supercapacitors in Motion: Autonomous Microswimmers for Naturalâ€Resource Recovery. Angewandte Chemie - International Edition, 2019, 58, 13340-13344.	7.2	14
671	Chemistry of Layered Pnictogens: Phosphorus, Arsenic, Antimony, and Bismuth. Angewandte Chemie, 2019, 131, 7631-7637.	1.6	14
672	Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahighâ€Aspectâ€Ratio 2D Microsheets. Small, 2020, 16, e2002037.	5.2	14
673	Vanadium Dopants: A Boon or a Bane for Molybdenum Dichalcogenidesâ€Based Electrocatalysis Applications. Advanced Functional Materials, 2021, 31, 2009083.	7.8	14
674	Bistable (Supra)molecular Switches on 3D-Printed Responsive Interfaces with Electrical Readout. ACS Applied Materials & Interfaces, 2021, 13, 12649-12655.	4.0	14
675	Versatile Design of Functional Organic–Inorganic 3Dâ€Printed (Opto)Electronic Interfaces with Custom Catalytic Activity. Small, 2021, 17, e2103189.	5.2	14
676	Microchip Capillary Electrophoresis-Electrochemistry with Rigid Graphite-Epoxy Composite Detector. Electroanalysis, 2006, 18, 207-210.	1.5	13
677	Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyl)pyridine-phosphonate–TiO2 film. Journal of Electroanalytical Chemistry, 2011, 657, 196-201.	1.9	13
678	Oxidation of DNA bases is influenced by their position in the DNA strand. Electrochemistry Communications, 2012, 22, 207-210.	2.3	13
679	Magnetic control of electrochemical processes at electrode surface using iron-rich graphene materials with dual functionality. Nanoscale, 2014, 6, 7391-7396.	2.8	13
680	Effect of Electrolyte pH on the Inherent Electrochemistry of Layered Transitionâ€Metal Dichalcogenides (MoS ₂ , MoSe ₂ , WS ₂ , WSe ₂). ChemElectroChem, 2015, 2, 1713-1718.	1.7	13
681	Chemically Modified Graphene: The Influence of Structural Properties on the Assessment of Antioxidant Capacity. Chemistry - A European Journal, 2015, 21, 11793-11798.	1.7	13
682	Simultaneous self-exfoliation and autonomous motion of MoS ₂ particles in water. Chemical Communications, 2015, 51, 9899-9902.	2.2	13
683	Susceptibility of FeS2 hydrogen evolution performance to sulfide poisoning. Electrochemistry Communications, 2015, 58, 29-32.	2.3	13
684	Geographical and Geological Origin of Natural Graphite Heavily Influence the Electrical and Electrochemical Properties of Chemically Modified Graphenes. Chemistry - A European Journal, 2015, 21, 8435-8440.	1.7	13

#	Article	IF	CITATIONS
685	Etched nanoholes in graphitic surfaces for enhanced electrochemistry of basal plane. Carbon, 2017, 123, 84-92.	5.4	13
686	Near-Atomic-Thick Bismuthene Oxide Microsheets for Flexible Aqueous Anodes: Boosted Performance upon 3D → 2D Transition. ACS Applied Materials & Interfaces, 2020, 12, 55936-55944.	4.0	13
687	Prospects for Functionalizing Elemental 2D Pnictogens: A Study of Molecular Models. ACS Nano, 2020, 14, 7722-7733.	7.3	13
688	Flexible Graphite–Poly(Lactic Acid) Composite Films as Large-Area Conductive Electrodes for Energy Applications. ACS Applied Energy Materials, 2021, 4, 6975-6981.	2.5	13
689	Organic photoelectrode engineering: accelerating photocurrent generation <i>via</i> donor–acceptor interactions and surface-assisted synthetic approach. Journal of Materials Chemistry A, 2021, 9, 7162-7171.	5.2	13
690	Hybrid Inorganic–Organic Visible-Light-Driven Microrobots Based on Donor–Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances. ACS Nano, 2021, 15, 18458-18468.	7.3	13
691	Platelet graphite nanofibers/soft polymer composites for electrochemical sensing and biosensing. Sensors and Actuators B: Chemical, 2011, 156, 79-83.	4.0	12
692	Oxidation of DNA Bases Influenced by the Presence of Other Bases. Electroanalysis, 2012, 24, 1147-1152.	1.5	12
693	Comparison of the electroanalytical performance of chemically modified graphenes (CMGs) using uric acid. Electrochemistry Communications, 2012, 20, 141-144.	2.3	12
694	Carbonaceous impurities in carbon nanotubes are responsible for accelerated electrochemistry of acetaminophen. Electrochemistry Communications, 2013, 26, 71-73.	2.3	12
695	Hydroboration of Graphene Oxide: Towards Stoichiometric Graphol and Hydroxygraphane. Chemistry - A European Journal, 2015, 21, 8130-8136.	1.7	12
696	Functionalization of Hydrogenated Graphene: Transitionâ€Metalâ€Catalyzed Crossâ€Coupling Reactions of Allylic Câ^'H Bonds. Angewandte Chemie, 2016, 128, 10909-10912.	1.6	12
697	MoS ₂ /WS ₂ â€Graphene Composites through Thermal Decomposition of Tetrathiomolybdate/Tetrathiotungstate for Proton/Oxygen Electroreduction. ChemPhysChem, 2016, 17, 2890-2896.	1.0	12
698	Doped and undoped graphene platforms: the influence of structural properties on the detection of polyphenols. Scientific Reports, 2016, 6, 20673.	1.6	12
699	Synergetic Metals on Carbocatalyst Shungite. Chemistry - A European Journal, 2017, 23, 18232-18238.	1.7	12
700	Covalently modified enzymatic 3D-printed bioelectrode. Mikrochimica Acta, 2021, 188, 374.	2.5	12
701	Two-dimensional vanadium sulfide flexible graphite/polymer films for near-infrared photoelectrocatalysis and electrochemical energy storage. Chemical Engineering Journal, 2022, 435, 135131.	6.6	12
702	Chiral analysis of biogenicDL-amino acids derivatized by urethane - protected α-amino acidN-carboxyanhydride using capillary zone electrophoresis and micellar electrokinetic chromatography. Electrophoresis, 2002, 23, 2449-2456.	1.3	11

#	Article	IF	CITATIONS
703	Direct Determination of Bioavailable Molybdenum in Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 1806-1810.	1.7	11
704	Prolonged exposure of graphite oxide to soft X-ray irradiation during XPS measurements leads to alterations of the chemical composition. Analyst, The, 2013, 138, 7012.	1.7	11
705	An insight into the hybridization mechanism of hairpin DNA physically immobilized on chemically modified graphenes. Analyst, The, 2013, 138, 467-471.	1.7	11
706	Electrochemical properties of layered SnO and PbO for energy applications. RSC Advances, 2015, 5, 101949-101958.	1.7	11
707	Contrasts between Mild and Harsh Oxidation of Carbon Nanotubes in terms of their Properties and Electrochemical Performance. ChemElectroChem, 2016, 3, 1713-1719.	1.7	11
708	Reducing emission of carcinogenic by-products in the production of thermally reduced graphene oxide. Green Chemistry, 2016, 18, 6618-6629.	4.6	11
709	MoS ₂ Nanoparticles as Electrocatalytic Labels in Magneto-Immunoassays. ACS Applied Materials & Interfaces, 2018, 10, 16861-16866.	4.0	11
710	Arsenene nanomotors as anticancer drug carrier. Applied Materials Today, 2020, 21, 100819.	2.3	11
711	Corrosion of light powered Pt/TiO2 microrobots. Applied Materials Today, 2020, 20, 100659.	2.3	11
712	Layered platinum dichalcogenides (PtS2, PtSe2, PtTe2) for non-enzymatic electrochemical sensor. Applied Materials Today, 2020, 19, 100606.	2.3	11
713	3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing. Electrochemistry Communications, 2021, 125, 106984.	2.3	11
714	Self-Propelled Activated Carbon Micromotors for "On-the-Fly―Capture of Nitroaromatic Explosives. Journal of Physical Chemistry C, 2021, 125, 18040-18045.	1.5	11
715	Fluorinated MAX Phases for Photoelectrochemical Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2022, 10, 2793-2801.	3.2	11
716	DETERMINATION OF AMINO DERIVATIVES OF POLYCYCLIC AROMATIC HYDROCARBONS USING CAPILLARY ELECTROPHORESIS. Analytical Letters, 2001, 34, 1369-1375.	1.0	10
717	Blood metabolite strongly suppresses motion of electrochemically deposited catalytic self-propelled microjet engines. Electrochemistry Communications, 2014, 38, 128-130.	2.3	10
718	Acetylene bubble-powered autonomous capsules: towards in situ fuel. Chemical Communications, 2014, 50, 15849-15851.	2.2	10
719	Fluorinated Nanocarbons Cytotoxicity. Chemistry - A European Journal, 2015, 21, 13020-13026.	1.7	10
720	Simultaneous Anodic and Cathodic Voltammetric Detection of Patulin and Ochratoxin A on Wellâ€Đefined Carbon Electrodes. Electroanalysis, 2015, 27, 924-928.	1.5	10

#	Article	IF	CITATIONS
721	Misfitâ€Layered Bi _{1.85} Sr ₂ Co _{1.85} O _{7.7â~`<i>δ</i>} for the Hydrogen Evolution Reaction: Beyond van der Waals Heterostructures. ChemPhysChem, 2015, 16, 769-774.	1.0	10
722	Inherent Electrochemistry of Layered Postâ€Transition Metal Halides: The Unexpected Effect of Potential Cycling of PbI ₂ . Chemistry - A European Journal, 2015, 21, 3073-3078.	1.7	10
723	Graphane Nanostripes. Angewandte Chemie - International Edition, 2016, 55, 13965-13969.	7.2	10
724	Multifunctional electrocatalytic hybrid carbon nanocables with highly active edges on their walls. Nanoscale, 2016, 8, 6700-6711.	2.8	10
725	Graphene/Group 5 Transition Metal Dichalcogenide Composites for Electrochemical Applications. Chemistry - A European Journal, 2017, 23, 10430-10437.	1.7	10
726	Tailoring: Atomic Layer Deposition as a General Method Turns any 3D-Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty (Adv. Energy Mater. 26/2019). Advanced Energy Materials, 2019, 9, 1970102.	10.2	10
727	Coordination chemistry of 2D and layered gray arsenic: photochemical functionalization with chromium hexacarbonyl. NPG Asia Materials, 2019, 11, .	3.8	10
728	2H and 2H/1T-Transition Metal Dichalcogenide Films Prepared via Powderless Gas Deposition for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 16440-16449.	3.2	10
729	Photo-Responsive Doped 3D-Printed Copper Electrodes for Water Splitting: Refractory One-Pot Doping Dramatically Enhances the Performance. Journal of Physical Chemistry C, 2022, 126, 9016-9026.	1.5	10
730	Reynolds numbers exhibit dramatic influence on directionality of movement of self-propelled systems. Physical Chemistry Chemical Physics, 2012, 14, 6456.	1.3	9
731	Electrochemical properties of carbon nanodiscs. RSC Advances, 2012, 2, 1565-1568.	1.7	9
732	Remote Electrochemical Monitoring of an Autonomous Self-Propelled Capsule. Journal of Physical Chemistry C, 2014, 118, 29896-29902.	1.5	9
733	Redox reaction of p-aminophenol at carbon nanotube electrodes is accelerated by carbonaceous impurities. Electrochemistry Communications, 2014, 38, 1-3.	2.3	9
734	Impact electrochemistry: colloidal metal sulfide detection by cathodic particle coulometry. Physical Chemistry Chemical Physics, 2015, 17, 26997-27000.	1.3	9
735	Smart Microdevices Laying "Breadcrumbs―to Find the Way Home: Chemotactic Homing TiO 2 /Pt Janus Microrobots. Chemistry - an Asian Journal, 2019, 14, 2456-2459.	1.7	9
736	Nanorobots: Machines Squeezed between Molecular Motors and Micromotors. CheM, 2020, 6, 1032.	5.8	9
737	3D-printed transmembrane glycoprotein cancer biomarker aptasensor. Applied Materials Today, 2021, 24, 101153.	2.3	9
738	Microrobotic photocatalyst on-the-fly: 1D/2D nanoarchitectonic hybrid-based layered metal thiophosphate magnetic micromachines for enhanced photodegradation of nerve agent. Chemical Engineering Journal, 2022, 446, 137342.	6.6	9

#	Article	IF	CITATIONS
739	Fully Programmable Collective Behavior of Lightâ€Powered Chemical Microrobotics: pHâ€Dependent Motion Behavior Switch and Controlled Cancer Cell Destruction. Advanced Functional Materials, 2022, 32, .	7.8	9
740	Comparison of Association Constants of Cyclodextrins and Their tert-Butyl Derivatives With Halogenbenzoic Acids and Acridine Derivatives. Molecules, 2001, 6, 221-229.	1.7	8
741	Micro- and nanotechnology in electrochemical detection science. Talanta, 2007, 74, 275-275.	2.9	8
742	Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets. Physical Chemistry Chemical Physics, 2013, 15, 7755.	1.3	8
743	Electrochemically reduced graphene nanoribbons: Interference from inherent electrochemistry of the material in DPV studies. Electrochemistry Communications, 2014, 46, 137-139.	2.3	8
744	Investigation on the ability of heteroatom-doped graphene for biorecognition. Nanoscale, 2017, 9, 3530-3536.	2.8	8
745	Semi-conducting single-walled carbon nanotubes are detrimental when compared to metallic single-walled carbon nanotubes for electrochemical applications. Physical Chemistry Chemical Physics, 2017, 19, 27320-27325.	1.3	8
746	Corrosion due to ageing influences the performance of tubular platinum microrobots. Nanoscale, 2018, 10, 1322-1325.	2.8	8
747	Structure–Function Dependence on Template-Based Micromotors. ACS Applied Energy Materials, 2018, 1, 3443-3448.	2.5	8
748	Fluorographene and Graphane as an Excellent Platform for Enzyme Biocatalysis. Chemistry - A European Journal, 2018, 24, 16833-16839.	1.7	8
749	Flexible Pt/Graphene Foil Containing only 6.6 wt % of Pt has a Comparable Hydrogen Evolution Reaction Performance to Platinum Metal. ACS Sustainable Chemistry and Engineering, 2019, 7, 11721-11727.	3.2	8
750	Edge vs. basal plane electrochemistry of layered pnictogens (As, Sb, Bi): Does edge always offer faster electron transfer?. Applied Materials Today, 2019, 16, 179-184.	2.3	8
751	Thiographene synthesized from fluorographene <i>via</i> xanthogenate with immobilized enzymes for environmental remediation. Nanoscale, 2019, 11, 10695-10701.	2.8	8
752	Fluorine saturation on thermally reduced graphene. Applied Materials Today, 2019, 15, 343-349.	2.3	8
753	2D Germanane Derivative as a Vector for Overcoming Doxorubicin Resistance in Cancer Cells. Applied Materials Today, 2020, 20, 100697.	2.3	8
754	Confined Bubbleâ€Propelled Microswimmers in Capillaries: Wall Effect, Fuel Deprivation, and Exhaust Product Excess. Small, 2020, 16, 2000413.	5.2	8
755	Catalyst Formation and <i>In Operando</i> Monitoring of the Electrocatalytic Activity in Flow Reactors. ACS Applied Materials & amp; Interfaces, 2021, 13, 35777-35784.	4.0	8
756	Atomic layer deposition of electrocatalytic layer of MoS2 onto metal-based 3D-printed electrode toward tailoring hydrogen evolution efficiency. Applied Materials Today, 2021, 24, 101131.	2.3	8

#	Article	IF	CITATIONS
757	Layered MAX phase electrocatalyst activity is driven by only a few hot spots. Journal of Materials Chemistry A, 2022, 10, 3206-3215.	5.2	8
758	Microrobotic carrier with enzymatically encoded drug release in the presence of pancreatic cancer cells via programmed self-destruction. Applied Materials Today, 2022, 27, 101494.	2.3	8
759	Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems. Applied Catalysis B: Environmental, 2022, 316, 121609.	10.8	8
760	Chiral Analysis of Biogenic D,L-Amino Acids Derivatized by N-Fluorenylmethoxycarbonyl-L-alanyl N-Carboxyanhydride Using High-Performance Liquid Chromatography. Journal of Chromatographic Science, 2002, 40, 505-508.	0.7	7
761	Graphene, Carbon Nanotubes and Nanoparticles in Cell Metabolism. Current Drug Metabolism, 2012, 13, 251-256.	0.7	7
762	Potassium assisted reduction and doping of graphene oxides: towards faster electron transfer kinetics. RSC Advances, 2013, 3, 10900.	1.7	7
763	Metallic impurities availability in reduced graphene is greatly enhanced by its ultrasonication. Faraday Discussions, 2013, 164, 275.	1.6	7
764	Graphane Nanostripes. Angewandte Chemie, 2016, 128, 14171-14175.	1.6	7
765	Phenols as probes of chemical composition of graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 30515-30519.	1.3	7
766	Chemically Reduced Graphene Oxide for the Assessment of Food Quality: How the Electrochemical Platform Should Be Tailored to the Application. Chemistry - A European Journal, 2017, 23, 1930-1936.	1.7	7
767	Detection of Amphipathic Viral Peptide on Screen-Printed Electrodes by Liposome Rupture Impact Voltammetry. Analytical Chemistry, 2017, 89, 11753-11757.	3.2	7
768	Introduction of sulfur to graphene oxide by Friedel-Crafts reaction. FlatChem, 2017, 6, 28-36.	2.8	7
769	Graphene Oxide: Carbocatalyst or Reagent?. Angewandte Chemie, 2018, 130, 16955-16957.	1.6	7
770	Chemotaktische Mikro―und Nanomaschinen. Angewandte Chemie, 2019, 131, 2212-2218.	1.6	7
771	High resolution electrochemical additive manufacturing of microstructured active materials: case study of MoS _{<i>x</i>} as a catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 22072-22081.	5.2	7
772	Layered transition metal selenophosphites for visible light photoelectrochemical production of hydrogen. Electrochemistry Communications, 2021, 129, 107077.	2.3	7
773	Autonomous self-propelled MnO2 micromotors for hormones removal and degradation. Applied Materials Today, 2022, 26, 101312.	2.3	7
774	Hybrid magneto-photocatalytic microrobots for sunscreens pollutants decontamination. Chemical Engineering Journal, 2022, 446, 137139.	6.6	7

#	Article	IF	CITATIONS
775	Germanium-oxide-coated carbon nanotubes. Nanotechnology, 2009, 20, 425606.	1.3	6
776	Detection of Biomarkers with Carbon Nanotube-Based Immunosensors. Methods in Molecular Biology, 2010, 625, 227-237.	0.4	6
777	Electrochemistry in Microfluidics and Capillary Electrophoresis. Electrophoresis, 2011, 32, 793-794.	1.3	6
778	Carcinogenic Organic Residual Compounds Readsorbed on Thermally Reduced Graphene Materials are Released at Low Temperature. Chemistry - A European Journal, 2013, 19, 14446-14450.	1.7	6
779	Direct Voltammetric Determination of Redoxâ€Active Iron in Carbon Nanotubes. ChemPhysChem, 2014, 15, 3819-3823.	1.0	6
780	Hydrogenation of Fluorographite and Fluorographene: An Easy Way to Produce Highly Hydrogenated Graphene. Chemistry - A European Journal, 2018, 24, 8350-8360.	1.7	6
781	Fluorographenes for Energy and Sensing Application: The Amount of Fluorine Matters. ACS Omega, 2018, 3, 17700-17706.	1.6	6
782	Drug Delivery: Cooperative Multifunctional Self-Propelled Paramagnetic Microrobots with Chemical Handles for Cell Manipulation and Drug Delivery (Adv. Funct. Mater. 43/2018). Advanced Functional Materials, 2018, 28, 1870311.	7.8	6
783	Synthesis and properties of phosphorus and sulfur co-doped graphene. New Journal of Chemistry, 2018, 42, 16093-16102.	1.4	6
784	Micro―and Nanomachines on the Move. Advanced Functional Materials, 2018, 28, 1801745.	7.8	6
785	Bipolar Electrochemistry as a Simple Synthetic Route toward Nanoscale Transition of Mo ₂ B ₅ and W ₂ B ₅ for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
786	Hexagonal and Cubic Boron Nitride in Bulk and Nanosized Forms and Their Capacitive Behavior. ChemElectroChem, 2020, 7, 74-77.	1.7	6
787	Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensors and Actuators B: Chemical, 2020, 312, 127967.	4.0	6
788	Faceted Crystal Nanoarchitectonics of Organic–Inorganic 3D-Printed Visible-Light Photocatalysts. ACS Applied Energy Materials, 2022, 5, 3252-3258.	2.5	6
789	Magnetic Biohybrid Robots as Efficient Drug Carrier to Generate Plant Cell Clones. Small, 2022, 18, e2200208.	5.2	6
790	Fluorinated Transition Metal Carbides for Flexible Supercapacitors. ACS Applied Energy Materials, 2022, 5, 6353-6362.	2.5	6
791	Capillary zone electrophoretic assay of biologically active thioacridine derivatives. Journal of Separation Science, 2003, 26, 129-132.	1.3	5
792	Carbon Nanotube Biosensors Based on Electrochemical Detection. Methods in Molecular Biology, 2010, 625, 205-212.	0.4	5

#	Article	IF	CITATIONS
793	Soldering DNA to graphene via 0, 1 and 2-point contacts: Electrochemical impedance spectroscopic investigation. Electrochemistry Communications, 2013, 28, 83-86.	2.3	5
794	Simultaneous Electrochemical Detection of Silver and Molybdenum Nanoparticles. ChemElectroChem, 2014, 1, 529-531.	1.7	5
795	Ferromagnetism: Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5139-5139.	11.1	5
796	A study of the effect of sonication time on the catalytic performance of layered WS ₂ from various sources. Physical Chemistry Chemical Physics, 2017, 19, 2768-2777.	1.3	5
797	Morphologyâ€Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials, 2018, 28, 1800592.	7.8	5
798	MnPS3 shows anticancer behaviour towards lung cancer cells. FlatChem, 2019, 18, 100134.	2.8	5
799	Metallâ€Phosphorâ€Trichalkogenide (MPCh 3): von der Synthese zu aktuellen Energieanwendungen. Angewandte Chemie, 2019, 131, 9426-9438.	1.6	5
800	Layered black phosphorus as a reducing agent – decoration with group 10 elements. RSC Advances, 2020, 10, 36452-36458.	1.7	5
801	Structural transition induced by niobium doping in layered titanium disulfide: The impact on electrocatalytic performance. Applied Materials Today, 2020, 19, 100555.	2.3	5
802	Silicane Derivative Increases Doxorubicin Efficacy in an Ovarian Carcinoma Mouse Model: Fighting Drug Resistance. ACS Applied Materials & Interfaces, 2021, 13, 31355-31370.	4.0	5
803	Biodegradable polyester platform for extrusion-based bioprinting. Bioprinting, 2022, 26, e00198.	2.9	5
804	Photoelectrolysis of TiO2 is Highly Localized and the Selectivity is Affected by the Light. Chemical Engineering Journal, 2022, , 136995.	6.6	5
805	Micellar Polymer Magnetic Microrobots as Efficient Nerve Agent Microcleaners. ACS Applied Materials & Interfaces, 2022, 14, 26128-26134.	4.0	5
806	Al ₂ O ₃ /Covalent Organic Framework on 3D-Printed Nanocarbon Electrodes for Enhanced Biomarker Detection. ACS Applied Nano Materials, 2022, 5, 9719-9727.	2.4	5
807	Non-aqueous capillary electrophoretic separation and detection of 6H-pyrimido[2,1-a]isoindoles. Journal of Separation Science, 2002, 25, 443-446.	1.3	4
808	Nonaqueous capillary electrophoretic assays ofp-phenylene-bis-4,4'-(1-aryl-2,6-diphenylpyridinium) molecular wires. Electrophoresis, 2005, 26, 4465-4467.	1.3	4
809	Nanomotors: Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro-objects (Adv. Funct. Mater. 15/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	4
810	On reproducibility of preparation of basal plane pyrolytic graphite electrode surface. Electrochemistry Communications, 2011, 13, 1054-1059.	2.3	4

#	Article	IF	CITATIONS
811	Electroactivity of graphene oxide on different substrates. RSC Advances, 2012, 2, 10575.	1.7	4
812	Simultaneous Direct Voltammetric Determination of Metalâ€Oxide Nanoparticles from Their Mixture (CuO/NiO). ChemElectroChem, 2014, 1, 249-253.	1.7	4
813	Graphene: Oxygen-Free Highly Conductive Graphene Papers (Adv. Funct. Mater. 31/2014). Advanced Functional Materials, 2014, 24, 4877-4877.	7.8	4
814	Graphene in analytical science. Analytical and Bioanalytical Chemistry, 2014, 406, 6883-6884.	1.9	4
815	The gating effect by thousands of bubble-propelled micromotors in macroscale channels. Nanoscale, 2015, 7, 11575-11579.	2.8	4
816	Graphene: Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties (Adv. Mater. 14/2015). Advanced Materials, 2015, 27, 2407-2407.	11.1	4
817	Rücktitelbild: Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electronâ€Transfer Properties (Angew. Chem. 10/2016). Angewandte Chemie, 2016, 128, 3576-3576.	1.6	4
818	Planar Polyolefin Nanostripes: Perhydrogenated Graphene. Chemistry - A European Journal, 2017, 23, 11961-11968.	1.7	4
819	Molybdenum Sulfide Electrocatalysis is Dramatically Influenced by Solvents Used for Its Dispersions. ACS Omega, 2018, 3, 14371-14379.	1.6	4
820	Covalent Functionalization of Exfoliated Arsenic with Chlorocarbene. Angewandte Chemie, 2018, 130, 15053-15056.	1.6	4
821	Nanoparticles Based on Poly(trimethylene carbonate) Triblock Copolymers with Post-Crystallization Ability and Their Degradation in vitro. Macromolecular Research, 2018, 26, 1026-1034.	1.0	4
822	Mix-and-Read No-Wash Fluorescence DNA Sensing System Using Graphene Oxide: Analytical Performance of Fresh Versus Aged Dispersions. ACS Omega, 2019, 4, 1611-1616.	1.6	4
823	Selenium covalently modified graphene: towards gas sensing. 2D Materials, 2019, 6, 034006.	2.0	4
824	Pnictogenâ€Based Enzymatic Phenol Biosensors: Phosphorene, Arsenene, Antimonene, and Bismuthene. Angewandte Chemie, 2019, 131, 140-144.	1.6	4
825	Functional metal-based 3D-printed electronics engineering: Tunability and bio-recognition. Applied Materials Today, 2022, 28, 101519.	2.3	4
826	Ultrathin Organically Modified Silica Layer Coated Carbon Nanotubes: Fabrication, Characterization and Electrical Insulating Properties. Chemistry - an Asian Journal, 2009, 4, 662-667.	1.7	3
827	Inside Cover: Solid-State Electrochemistry of Graphene Oxides: Absolute Quantification of Reducible Groups using Voltammetry (Chem. Asian J. 11/2011). Chemistry - an Asian Journal, 2011, 6, 2850-2850.	1.7	3
828	Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. ChemPlusChem, 2013, 78, 384-384.	1.3	3

#	Article	IF	CITATIONS
829	Graphene Oxides: Transformations in Natural Waters over a Period of Three Months. ChemPlusChem, 2014, 79, 844-849.	1.3	3
830	Permanganate-Route-Prepared Electrochemically Reduced Graphene Oxides Exhibit Limited Anodic Potential Window. Journal of Physical Chemistry C, 2014, 118, 23368-23375.	1.5	3
831	Molybdenum Disulfide: Lithium Intercalation Compound Dramatically Influences the Electrochemical Properties of Exfoliated MoS2 (Small 5/2015). Small, 2015, 11, 604-604.	5.2	3
832	Labeling Graphene Oxygen Groups with Europium. ChemPhysChem, 2015, 16, 331-334.	1.0	3
833	Graphene Oxide Stimulates Cells to Ruffle and Shed Plasma Membranes. CheM, 2016, 1, 189-190.	5.8	3
834	Graphene Oxide Mimics Biological Signaling Cue to Rescue Starving Bacteria. Advanced Functional Materials, 2021, 31, 2102328.	7.8	3
835	Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitonâ€onâ€theâ€Fly― Angewandte Chemie, 2022, 134, .	1.6	3
836	Dual polymer engineering enables high-performance 3D printed Zn-organic battery cathodes. Applied Materials Today, 2022, 28, 101515.	2.3	3
837	Chapter 35 Microchip electrophoresis/electrochemistry systems for analysis of nitroaromatic explosives. Comprehensive Analytical Chemistry, 2007, , 873-884.	0.7	2
838	Self-propelled nano and microsystems. Nanoscale, 2013, 5, 1258-1258.	2.8	2
839	Graphene Oxide: Light and Atmosphere Affect the Quasi-equilibrium States of Graphite Oxide and Graphene Oxide Powders (Small 11/2015). Small, 2015, 11, 1265-1265.	5.2	2
840	Electrochemistry of Cd ₃ As ₂ —A 3D Analogue of Graphene. ChemNanoMat, 2015, 1, 359-363.	1.5	2
841	Fluorographene: Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism (Small 31/2015). Small, 2015, 11, 3789-3789.	5.2	2
842	Nanoarchitectonics + future leaders = bright success in materials science and technology. Science and Technology of Advanced Materials, 2015, 16, 010302.	2.8	2
843	3D Printing: Helical 3D-Printed Metal Electrodes as Custom-Shaped 3D Platform for Electrochemical Devices (Adv. Funct. Mater. 5/2016). Advanced Functional Materials, 2016, 26, 803-803.	7.8	2
844	Innentitelbild: Pnictogen (As, Sb, Bi) Nanosheets for Electrochemical Applications Are Produced by Shear Exfoliation Using Kitchen Blenders (Angew. Chem. 46/2017). Angewandte Chemie, 2017, 129, 14510-14510.	1.6	2
845	Supercapacitors in Motion: Autonomous Microswimmers for Naturalâ€Resource Recovery. Angewandte Chemie, 2019, 131, 13474-13478.	1.6	2
846	Smart Robots: Selfâ€Propelled 3Dâ€Printed "Aircraft Carrier―of Lightâ€Powered Smart Micromachines for Largeâ€Volume Nitroaromatic Explosives Removal (Adv. Funct. Mater. 39/2019). Advanced Functional Materials, 2019, 29, 1970267.	7.8	2

#	Article	IF	CITATIONS
847	A Metalâ€Ðoped Fungiâ€Based Biomaterial for Advanced Electrocatalysis. Chemistry - A European Journal, 2019, 25, 3828-3834.	1.7	2
848	Uranium detection by 3D-printed titanium structures: Towards decentralized nuclear forensic applications. Applied Materials Today, 2020, 21, 100881.	2.3	2
849	Structural Manipulation of Layered TiS ₂ to TiS ₃ Nanobelts through Niobium Doping for Highâ€Performance Supercapacitors. ChemElectroChem, 2020, 7, 4985-4989.	1.7	2
850	Edges are more electroactive than basal planes in synthetic bulk crystals of TiS2 and TiSe2. Applied Materials Today, 2022, 26, 101309.	2.3	2
851	Electrochemistry in Microfluidics and Capillary Electrophoresis. Electrophoresis, 2009, 30, 3303-3304.	1.3	1
852	Inside Cover: Nanographite Impurities of Single-Walled and Double-Walled Carbon Nanotubes Are Responsible for the Observed "Electrocatalytic―Effect towards the Reduction of Azo Groups (Chem.) Tj ETQq	1 0.0 0 rgB ⁻	[10verlock
853	Nanocarbon electrochemistry. SPR Electrochemistry, 0, , 104-123.	0.7	1
854	Electrochemistry in (Bio)â€Nanoanalysis, Electromigration and Liquid Phase Separations. Electrophoresis, 2013, 34, 1977-1978.	1.3	1
855	Chemical Optimization for Simultaneous Voltammetric Detection of Molybdenum and Silver Nanoparticles in Aqueous Buffer Solutions. ChemElectroChem, 2014, 1, 2110-2115.	1.7	1
856	Selective Nitrogen Functionalization of Graphene by Bucherer-Type Reaction. Chemistry - A European Journal, 2015, 21, 7969-7969.	1.7	1
857	Cancer Therapy: Black Phosphorus Nanoparticles Potentiate the Anticancer Effect of Oxaliplatin in Ovarian Cancer Cell Line (Adv. Funct. Mater. 36/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
858	Nanoclay Nanomotors: Nanorobots Constructed from Nanoclay: Using Nature to Create Self-Propelled Autonomous Nanomachines (Adv. Funct. Mater. 40/2018). Advanced Functional Materials, 2018, 28, 1870291.	7.8	1
859	Electrocatalysis: Exfoliated Layered Manganese Trichalcogenide Phosphite (MnP <i>X</i> ₃ ,) Tj ETQq1	1 0.7843 7.8	14 rgBT /Ov 1
860	Observed Dramatically Improved Catalysis of Ag Shell on Au/Ag Coreâ€shell Nanorods is Due to Silver Impurities Released During Etching Process. Electroanalysis, 2019, 31, 1873-1877.	1.5	1
861	Tailorable nanostructured mercury/gold amalgam electrode arrays with varied surface areas and compositions. Sensors and Actuators B: Chemical, 2020, 302, 127175.	4.0	1
862	Frontispiece: Biocatalytic Micro―and Nanomotors. Chemistry - A European Journal, 2020, 26, .	1.7	1
863	Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection. , 2002, 23, 596.		1
864	Poly(methylmethacrylate) Microchip Electrophoresis Device with Thick-Film Amperometric Detector: Towards Fully Disposable Lab-on-a-Chip. Journal of the Association for Laboratory Automation, 2002, 7, 73-74.	2.8	0

#	Article	IF	CITATIONS
865	Procedure 53 DNA analysis by using gold nanoparticle as labels. Comprehensive Analytical Chemistry, 2007, , e381-e388.	0.7	0
866	Procedure 49 Analysis of nitroaromatic explosives with microchip electrophoresis using a graphite–epoxy composite detector. Comprehensive Analytical Chemistry, 2007, , e351-e355.	0.7	0
867	Double Wall Carbon Nanotubes as Electrochemical Biosensors of NADH and Glucose. , 2007, , .		0
868	Enzymatic Detection Based on Carbon Nanotubes. Methods in Molecular Biology, 2010, 625, 197-204.	0.4	0
869	Inside Cover: Signal Transducers and Enzyme Cofactors are Susceptible to Oxidation by Nanographite Impurities in Carbon Nanotube Materials (Chem. Eur. J. 20/2011). Chemistry - A European Journal, 2011, 17, 5450-5450.	1.7	0
870	90 Years of Polarography: Back to the Future. Chemical Record, 2012, 12, 13-13.	2.9	0
871	Inside Cover: On Oxygen-Containing Groups in Chemically Modified Graphenes (Chem. Eur. J. 15/2012). Chemistry - A European Journal, 2012, 18, 4438-4438.	1.7	Ο
872	Innentitelbild: Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8634-8634.	1.6	0
873	Titelbild: "Metal-Free―Catalytic Oxygen Reduction Reaction on Heteroatom-Doped Graphene is Caused by Trace Metal Impurities (Angew. Chem. 51/2013). Angewandte Chemie, 2013, 125, 13721-13721.	1.6	Ο
874	Guest Editorial: Electrochemistry of Graphene. Electroanalysis, 2014, 26, 4-4.	1.5	0
875	Frontispiece: Iridium-Catalyst-Based Autonomous Bubble-Propelled Graphene Micromotors with Ultralow Catalyst Loading. Chemistry - A European Journal, 2014, 20, n/a-n/a.	1.7	Ο
876	Electrochemistry in (Bio)â€Nanoanalysis, Electromigration and Liquid Phase Separations. Electrophoresis, 2015, 36, 1809-1810.	1.3	0
877	Voltammetry of Layered Black Phosphorus: Electrochemistry of Multilayer Phosphorene. ChemElectroChem, 2015, 2, 295-295.	1.7	Ο
878	Frontispiece: Hydrogenated Graphenes by Birch Reduction: Influence of Electron and Proton Sources on Hydrogenation Efficiency, Magnetism, and Electrochemistry. Chemistry - A European Journal, 2015, 21, .	1.7	0
879	WS2Nanoparticles: Bipolar Electrochemical Synthesis of WS2Nanoparticles and Their Application in Magneto-Immunosandwich Assay (Adv. Funct. Mater. 23/2016). Advanced Functional Materials, 2016, 26, 4231-4231.	7.8	Ο
880	Innenrücktitelbild: Synthesis of Graphene Oxide by Oxidation of Graphite with Ferrate(VI) Compounds: Myth or Reality? (Angew. Chem. 39/2016). Angewandte Chemie, 2016, 128, 12289-12289.	1.6	0
881	Titelbild: Graphane Nanostripes (Angew. Chem. 45/2016). Angewandte Chemie, 2016, 128, 14105-14105.	1.6	0
882	Focus on Electrochemistry in (Bio)â€Nanoanalysis, Electromigration, and Liquid Phase Separations. Electrophoresis, 2017, 38, 2685-2686.	1.3	0

#	Article	IF	CITATIONS
883	Frontispiece: Chemistry of Graphene Derivatives: Synthesis, Applications, and Perspectives. Chemistry - A European Journal, 2018, 24, .	1.7	0
884	Frontispiece: Nanohybrids of Twoâ€Dimensional Transitionâ€Metal Dichalcogenides and Titanium Dioxide for Photocatalytic Applications. Chemistry - A European Journal, 2018, 24, .	1.7	0
885	Black Phosphorous: Fluorination of Black Phosphorus-Will Black Phosphorus Burn Down in the Elemental Fluorine? (Adv. Funct. Mater. 35/2018). Advanced Functional Materials, 2018, 28, 1870247.	7.8	0
886	Graphene: Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons (Adv. Funct.) Tj ETQq0 0 C) rgBT /Ove 7.8	erlock 10 Tf 5
887	<i>In My Element</i> : Manganese. Chemistry - A European Journal, 2019, 25, 6251-6251.	1.7	0
888	Bismuthene Microsheets: Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahighâ€Aspectâ€Ratio 2D Microsheets (Small 29/2020). Small, 2020, 16, 2070163.	5.2	0
889	Limitations and Benefits of MAX Phases in Electroanalysis. Electroanalysis, 0, , .	1.5	Ο

890 Editorial [Hot Topic: Advanced Materials and Nanotechnology for DNA Detection (Guest Editor:) Tj ETQq0 0 0 rgBT Overlock 10 Tf 50 4

891	Innenrücktitelbild: Selfâ€Propelled Multifunctional Microrobots Harboring Chiral Supramolecular Selectors for "Enantiorecognitonâ€onâ€theâ€Fly―(Angew. Chem. 14/2022). Angewandte Chemie, 2022, 134,	0
-----	---	---