Alexander Welle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4049730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	UVâ€Triggered Dopamine Polymerization: Control of Polymerization, Surface Coating, and Photopatterning. Advanced Materials, 2014, 26, 8029-8033.	21.0	307
2	Adding Spatial Control to Click Chemistry: Phototriggered Diels–Alder Surface (Bio)functionalization at Ambient Temperature. Angewandte Chemie - International Edition, 2012, 51, 1071-1074.	13.8	170
3	Electrospun aliphatic polycarbonates as tailored tissue scaffold materials. Biomaterials, 2007, 28, 2211-2219.	11.4	140
4	Surface Patterning via Thiolâ€Yne Click Chemistry: An Extremely Fast and Versatile Approach to Superhydrophilicâ€Superhydrophobic Micropatterns. Advanced Materials Interfaces, 2014, 1, 1400269.	3.7	127
5	Photon Upconversion at Crystalline Organic–Organic Heterojunctions. Advanced Materials, 2016, 28, 8477-8482.	21.0	125
6	UVâ€Triggered Polymerization, Deposition, and Patterning of Plant Phenolic Compounds. Advanced Functional Materials, 2017, 27, 1700127.	14.9	111
7	Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface. Advanced Materials, 2018, 30, e1803890.	21.0	106
8	Micropatterned superhydrophobic structures for the simultaneous culture of multiple cell types and the study of cell–cell communication. Biomaterials, 2013, 34, 1757-1763.	11.4	102
9	Superhydrophobic and Slippery Lubricant-Infused Flexible Transparent Nanocellulose Films by Photoinduced Thiol–Ene Functionalization. ACS Applied Materials & Interfaces, 2016, 8, 34115-34122.	8.0	96
10	Singleâ€Step Fabrication of Highâ€Density Microdroplet Arrays of Lowâ€Surfaceâ€Tension Liquids. Advanced Materials, 2016, 28, 3202-3208.	21.0	93
11	Laser-assisted modification of polystyrene surfaces for cell culture applications. Applied Surface Science, 2007, 253, 9177-9184.	6.1	87
12	Reactive Superhydrophobic Surface and Its Photoinduced Disulfide-ene and Thiol-ene (Bio)functionalization. Nano Letters, 2015, 15, 675-681.	9.1	86
13	Photoâ€Patterning of Nonâ€Fouling Polymers and Biomolecules on Paper. Advanced Materials, 2014, 26, 4087-4092.	21.0	79
14	UV-Based Patterning of Polymeric Substrates for Cell Culture Applications. Biomedical Microdevices, 2002, 4, 33-41.	2.8	78
15	Plasma Protein Adsorption and Platelet Adhesion on Poly[bis(trifluoroethoxy)phosphazene] and Reference Material Surfaces. Journal of Colloid and Interface Science, 1998, 197, 263-274.	9.4	73
16	Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB. Drug Delivery, 2010, 17, 596-604.	5.7	73
17	Laser- and UV-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Applied Surface Science, 2009, 255, 5453-5457.	6.1	71
18	Reversible and Rewritable Surface Functionalization and Patterning via Photodynamic Disulfide Exchange. Advanced Materials, 2015, 27, 4997-5001.	21.0	69

#	Article	IF	CITATIONS
19	Photoswitchable nanoporous films by loading azobenzene in metal–organic frameworks of type HKUST-1. Chemical Communications, 2017, 53, 8070-8073.	4.1	68
20	Bottomâ€Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, 5692-5697.	13.8	64
21	Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance. Journal of Neuroscience Methods, 2005, 142, 243-250.	2.5	63
22	Light-driven reversible surface functionalization with anthracenes: visible light writing and mild UV erasing. Chemical Communications, 2017, 53, 1599-1602.	4.1	63
23	Interactions of N,N′-dimethylaminoethanol with steel surfaces in alkaline and chlorine containing solutions. Applied Surface Science, 1997, 119, 185-198.	6.1	62
24	Superexchange Charge Transport in Loaded Metal Organic Frameworks. ACS Nano, 2016, 10, 7085-7093.	14.6	62
25	Photochemical Generation of Light Responsive Surfaces. Advanced Functional Materials, 2013, 23, 4011-4019.	14.9	58
26	UVâ€Induced Tetrazoleâ€Thiol Reaction for Polymer Conjugation and Surface Functionalization. Angewandte Chemie - International Edition, 2015, 54, 8732-8735.	13.8	58
27	Nanoparticles Based on PLGA:Poloxamer Blends for the Delivery of Proangiogenic Growth Factors. Molecular Pharmaceutics, 2010, 7, 1724-1733.	4.6	54
28	Monolithic High Performance Surface Anchored Metalâ^'Organic Framework Bragg Reflector for Optical Sensing. Chemistry of Materials, 2015, 27, 1991-1996.	6.7	54
29	Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications, 2018, 9, 4332.	12.8	54
30	Simultaneous Dual Encoding of Threeâ€Dimensional Structures by Lightâ€Induced Modular Ligation. Angewandte Chemie - International Edition, 2016, 55, 3817-3822.	13.8	52
31	Fabrication and Spatially Resolved Functionalization of 3D Microstructures via Multiphotonâ€Induced Diels–Alder Chemistry. Advanced Functional Materials, 2014, 24, 3571-3580.	14.9	51
32	Benzylguanine Thiol Self-Assembled Monolayers for the Immobilization of SNAP-tag Proteins on Microcontact-Printed Surface Structures. Langmuir, 2010, 26, 6097-6101.	3.5	50
33	Surface Grafting via Photoâ€Induced Copperâ€Mediated Radical Polymerization at Extremely Low Catalyst Concentrations. Macromolecular Rapid Communications, 2015, 36, 1681-1686.	3.9	50
34	Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography. Lab on A Chip, 2011, 11, 1368.	6.0	48
35	Polymer surface patterningvia Diels–Alder trapping of photo-generated thioaldehydes. Chemical Communications, 2013, 49, 633-635.	4.1	48
36	Applications of shape memory alloys in medical instruments. Minimally Invasive Therapy and Allied Technologies, 2004, 13, 248-253.	1.2	45

#	Article	IF	CITATIONS
37	Spatially controlled surface immobilization of nucleophiles via trapping of photo-generated thioaldehydes. Chemical Science, 2013, 4, 3503.	7.4	45
38	Photoinduced C–C Reactions on Insulators toward Photolithography of Graphene Nanoarchitectures. Journal of the American Chemical Society, 2014, 136, 4651-4658.	13.7	45
39	Bio-inspired strategy for controlled dopamine polymerization in basic solutions. Polymer Chemistry, 2017, 8, 2145-2151.	3.9	44
40	Peptide-equipped tobacco mosaic virus templates for selective and controllable biomineral deposition. Beilstein Journal of Nanotechnology, 2015, 6, 1399-1412.	2.8	42
41	Carbonation of Wollastonite(001) Competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory. ACS Applied Materials & amp; Interfaces, 2015, 7, 4706-4712.	8.0	41
42	A combined high-throughput and high-content platform for unified on-chip synthesis, characterization and biological screening. Nature Communications, 2020, 11, 5391.	12.8	41
43	Mass spectrometry as a tool to advance polymer science. Nature Reviews Chemistry, 2020, 4, 257-268.	30.2	41
44	UVâ€Induced Disulfide Formation and Reduction for Dynamic Photopatterning. Angewandte Chemie - International Edition, 2016, 55, 13765-13769.	13.8	40
45	Organocatalyzed Photoâ€Atom Transfer Radical Polymerization of Methacrylic Acid in Continuous Flow and Surface Grafting. Macromolecular Rapid Communications, 2017, 38, 1700423.	3.9	39
46	Competitive plasma protein adsorption on modified polymer surfaces monitored by quartz crystal microbalance technique. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 357-370.	3.5	38
47	Controlled radical polymerization and in-depth mass-spectrometric characterization of poly(ionic) Tj ETQq1 1 0.7	'84314 rgl	BT ¦Qverlock
48	Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting. Beilstein Journal of Nanotechnology, 2013, 4, 638-648.	2.8	37
49	Macromolecular Surface Design: Photopatterning of Functional Stable Nitrile Oxides. Angewandte Chemie - International Edition, 2015, 54, 5777-5783.	13.8	37
50	Surface Topography, Surface Energy and Wettability of Magnetron‣puttered Amorphous Carbon (a) Films and Their Relevance for Platelet Adhesion. Advanced Engineering Materials, 2007, 9, 1114-1122.	3.5	36
51	Photolithographic Patterning of 3Dâ€Formed Polycarbonate Films for Targeted Cell Guiding. Advanced Materials, 2015, 27, 2621-2626.	21.0	36
52	Effect of pyrolysis oil components on the activity and selectivity of nickel-based catalysts during hydrotreatment. Applied Catalysis A: General, 2017, 544, 161-172.	4.3	34
53	Extraction and characterization methods for titanium dioxide nanoparticles from commercialized sunscreens. Environmental Science: Nano, 2018, 5, 191-202.	4.3	33
54	Singleâ€Molecule Encapsulation: A Straightforward Route to Highly Stable and Printable Enzymes. Small, 2016, 12, 1716-1722.	10.0	32

#	Article	IF	CITATIONS
55	Reparable Superhydrophobic Surface with Hidden Reactivity, Its Photofunctionalization and Photopatterning. Advanced Functional Materials, 2018, 28, 1803765.	14.9	31
56	Spatially Controlled Surface Immobilization of Nonmodified Peptides. Angewandte Chemie - International Edition, 2013, 52, 9714-9718.	13.8	30
57	Bi ₂ O ₃ nanoparticles encapsulated in surface mounted metal–organic framework thin films. Nanoscale, 2016, 8, 6468-6472.	5.6	30
58	Bioinspired Strategy for Controlled Polymerization and Photopatterning of Plant Polyphenols. Chemistry of Materials, 2018, 30, 1937-1946.	6.7	30
59	Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films. Diamond and Related Materials, 2009, 18, 895-898.	3.9	29
60	Direct UVâ€Induced Functionalization of Surface Hydroxy Groups by Thiol–Ol Chemistry. Angewandte Chemie - International Edition, 2014, 53, 3835-3839.	13.8	29
61	Interaction of Human Plasma Proteins with Thin Gelatin-Based Hydrogel Films: A QCM-D and ToF-SIMS Study. Biomacromolecules, 2014, 15, 2398-2406.	5.4	29
62	Bottomâ€Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atomâ€Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, 5786-5791.	2.0	29
63	Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials, 2016, 26, 8455-8462.	14.9	29
64	Ultrashort Pulsed Laser Surface Patterning of Titanium to Improve Osseointegration of Dental Implants. Advanced Engineering Materials, 2019, 21, 1900639.	3.5	28
65	Laser-Grafted Molecularly Imprinted Polymers for the Detection of Histamine from Organocatalyzed Atom Transfer Radical Polymerization. Macromolecules, 2019, 52, 2304-2313.	4.8	27
66	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	10.3	27
67	PLCA:poloxamer blend micro- and nanoparticles as controlled release systems for synthetic proangiogenic factors. European Journal of Pharmaceutical Sciences, 2010, 41, 644-649.	4.0	26
68	Photoâ€Induced Functionalization of Spherical and Planar Surfaces via Caged Thioaldehyde Endâ€Functional Polymers. Advanced Functional Materials, 2014, 24, 5649-5661.	14.9	25
69	Exploiting λâ€Orthogonal Photoligation for Layered Surface Patterning. Chemistry - A European Journal, 2018, 24, 576-580.	3.3	25
70	Crystalline Water at Room Temperature â^' Under Water and in Air. Crystal Growth and Design, 2008, 8, 2620-2622.	3.0	23
71	The para-fluoro-thiol ligation in water. Polymer Chemistry, 2017, 8, 1288-1293.	3.9	23
72	Adaptable and Reprogrammable Surfaces. Advanced Materials, 2019, 31, e1902665.	21.0	23

5

#	Article	IF	CITATIONS
73	Secondary ion mass spectrometry imaging and multivariate data analysis reveal coâ€aggregation patterns of <i>Populus trichocarpa</i> leaf surface compounds on a micrometer scale. Plant Journal, 2018, 93, 193-206.	5.7	22
74	Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films. European Polymer Journal, 2018, 109, 162-168.	5.4	21
75	Microstructuring of multiwell plates for three-dimensional cell culture applications by ultrasonic embossing. Biomedical Microdevices, 2012, 14, 291-301.	2.8	20
76	Additiveâ€Assisted Crystallization Dynamics in Twoâ€Step Fabrication of Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700509.	1.8	20
77	Ambient Temperature Ligation of Diene Functional Polymer and Peptide Strands onto Cellulose via Photochemical and Thermal Protocols. Macromolecular Rapid Communications, 2014, 35, 1121-1127.	3.9	19
78	Light-driven nitrile imine-mediated tetrazole–ene cycloaddition as a versatile platform for fullerene conjugation. Chemical Communications, 2015, 51, 13000-13003.	4.1	19
79	Spatially controlled cell adhesion on three-dimensional substrates. Biomedical Microdevices, 2010, 12, 787-795.	2.8	18
80	Defect Creation in Surface-Mounted Metal–Organic Framework Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 2655-2661.	8.0	18
81	Removal of arsenic(III) via nanofiltration: contribution of organic matter interactions. Water Research, 2021, 201, 117315.	11.3	18
82	Evaluating UV/H ₂ O ₂ exposure as a DEHP degradation treatment for plasticized PVC. Journal of Applied Polymer Science, 2014, 131, .	2.6	17
83	Degradation mechanisms of polyfluoreneâ€based organic semiconductor lasers under ambient and oxygenâ€free conditions. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1029-1034.	2.1	17
84	Photo-Cross-Linkable Polymer Inks for Solution-Based OLED Fabrication. Macromolecules, 2019, 52, 9105-9113.	4.8	17
85	Reversible Surface Wettability by Silanization. Advanced Materials Interfaces, 2020, 7, 1902134.	3.7	17
86	Free-Standing Nanomembranes Based on Selective CVD Deposition of Functional Poly- <i>p</i> -xylylenes. ACS Nano, 2015, 9, 1400-1407.	14.6	16
87	Competitive protein adsorption on micro patterned polymeric biomaterials, and viscoelastic properties of tailor made extracellular matrices. New Biotechnology, 2007, 24, 87-91.	2.7	15
88	<i>In vitro</i> observation of dynamic ordering processes in the extracellular matrix of living, adherent cells. Biointerphases, 2011, 6, 171-179.	1.6	15
89	Quasi-metallic behavior of ZnO grown by atomic layer deposition: The role of hydrogen. Journal of Applied Physics, 2017, 122, .	2.5	15
90	Band-gap tuning of Cu2ZnSn(S,Se)4 solar cell absorbers via defined incorporation of sulphur based on a post-sulphurization process. Solar Energy Materials and Solar Cells, 2018, 182, 158-165.	6.2	15

#	Article	IF	CITATIONS
91	Controlling biofilm formation with nitroxide functional surfaces. Polymer Chemistry, 2019, 10, 4252-4258.	3.9	15
92	The famousversusthe inconvenient - or the dawn and the rise of 3D-culture systems. World Journal of Stem Cells, 2009, 1, 43.	2.8	15
93	Surface Functionalization and Patterning by Multifunctional Resorcinarenes. ACS Applied Materials & Interfaces, 2018, 10, 39268-39278.	8.0	14
94	Dynamic Protein Adsorption onto Dendritic Polyglycerol Sulfate Self-Assembled Monolayers. Langmuir, 2018, 34, 10302-10308.	3.5	14
95	A Bio–Fluidic–Photonic Platform Based on Deep UV Modification of Polymers. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 214-222.	2.9	13
96	Biosensors coated with sulfated polysaccharides for the detection of hepatocyte growth factor/scatter factor in cell culture medium. Biosensors and Bioelectronics, 2010, 26, 1706-1709.	10.1	13
97	Designing π-Conjugated Polymeric Nano- and Microstructures via Light Induced Chemistry. Macromolecules, 2015, 48, 8718-8728.	4.8	13
98	Photo-induced surface encoding of gold nanoparticles. Chemical Communications, 2015, 51, 3363-3366.	4.1	13
99	Calcium Silicate Phases Explained by High-Temperature-Resistant Phosphate Probe Molecules. Langmuir, 2016, 32, 13577-13584.	3.5	13
100	2D laser lithography on silicon substrates <i>via</i> photoinduced copper-mediated radical polymerization. Chemical Communications, 2018, 54, 751-754.	4.1	12
101	Multi-material 3D microstructures with photochemically adaptive mechanical properties. Journal of Materials Chemistry C, 2020, 8, 10993-11000.	5.5	12
102	Significance of Nanopatterned and Clustered DLL1 for Hematopoietic Stem Cell Proliferation. Advanced Functional Materials, 2017, 27, 1606495.	14.9	11
103	Zweifache, simultane OberflÄ e henmodifikation von dreidimensionalen Mikrostrukturen mittels Photochemie. Angewandte Chemie, 2016, 128, 3882-3887.	2.0	10
104	UVâ€Induced Disulfide Formation and Reduction for Dynamic Photopatterning. Angewandte Chemie, 2016, 128, 13969-13973.	2.0	10
105	Oneâ€Step Fabrication of Pillar and Craterâ€Like Structures on Titanium Using Direct Laser Interference Patterning. Advanced Engineering Materials, 2018, 20, 1800160.	3.5	10
106	Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes. Membranes, 2019, 9, 124.	3.0	10
107	Spatially resolved photochemical coding of reversibly anchored cysteine-rich domains. Journal of Materials Chemistry B, 2017, 5, 4993-5000.	5.8	10
108	Acetic Acid Etching of Mg-xGd Alloys. Metals, 2019, 9, 117.	2.3	9

7

#	Article	IF	CITATIONS
109	Facile loading of thin-film surface-anchored metal-organic frameworks with Lewis-base guest molecules. Materials Chemistry Frontiers, 2017, 1, 1888-1894.	5.9	8
110	Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films. ACS Applied Materials & Interfaces, 2018, 10, 31965-31976.	8.0	8
111	Fluorescence excitation on monolithically integrated all-polymer chips. Journal of Biomedical Optics, 2010, 15, 041517.	2.6	7
112	Selective immobilization of Sonic hedgehog on benzylguanine terminated patterned self-assembled monolayers. Biomaterials, 2011, 32, 6719-6728.	11.4	7
113	Bioinstructive Coatings for Hematopoietic Stem Cell Expansion Based on Chemical Vapor Deposition Copolymerization. Biomacromolecules, 2017, 18, 3089-3098.	5.4	7
114	Impact of silver incorporation at the back contact of Kesterite solar cells on structural and device properties. Thin Solid Films, 2020, 709, 138223.	1.8	7
115	Substrateâ€Independent and Reâ€Writable Surface Patterning by Combining Polydopamine Coatings, Silanization, and Thiolâ€Ene Reaction. Advanced Functional Materials, 2021, 31, 2107716.	14.9	7
116	Microfabrication of Chip-sized Scaffolds for Three-dimensional Cell cultivation. Journal of Visualized Experiments, 2008, , .	0.3	6
117	Selective Functionalization of Microstructured Surfaces by Laserâ€Assisted Particle Transfer. Advanced Functional Materials, 2016, 26, 7067-7073.	14.9	6
118	Recodable surfaces based on switchable hydrogen bonds. Chemical Communications, 2016, 52, 8753-8756.	4.1	6
119	Electrodeposition of WO ₃ nanoparticles into surface mounted metal–organic framework HKUST-1 thin films. Nanotechnology, 2017, 28, 115605.	2.6	6
120	Superoleophobicity: Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870338.	21.0	6
121	Dynamic Nitroxide Functional Materials. Chemistry - A European Journal, 2018, 24, 18873-18879.	3.3	6
122	Photolithographic Encoding of Metal Complexes. Chemistry - A European Journal, 2015, 21, 14728-14731.	3.3	5
123	A Photolithographic Approach to Spatially Resolved Cross-Linked Nanolayers. Langmuir, 2015, 31, 3242-3253.	3.5	5
124	Solid-material-based coupling efficiency analyzed with time-of-flight secondary ion mass spectrometry. Applied Surface Science, 2016, 360, 306-314.	6.1	5
125	Photo-induced copper-mediated (meth)acrylate polymerization towards graphene oxide and reduced graphene oxide modification. European Polymer Journal, 2020, 134, 109810.	5.4	5
126	Chip-based Three-dimensional Cell Culture in Perfused Micro-bioreactors. Journal of Visualized Experiments, 2008, , .	0.3	4

#	Article	IF	CITATIONS
127	Photoiniferter surface grafting of poly(methyl acrylate) using xanthates. Journal of Polymer Science Part A, 2019, 57, 2002-2007.	2.3	4
128	Solid and Hollow Poly(<i>p</i> -xylylene) Particles Synthesis <i>via</i> Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials, 0, , .	6.7	4
129	Plasma Protein Adsorption and Platelet Adhesion on Poly[Bis(Trifluoroethoxy)Phosphazene]. Materials Research Society Symposia Proceedings, 1997, 489, 139.	0.1	3
130	Polymer photonic integrated circuits by DUV-induced modification. , 2006, , .		3
131	Patterning of Polymeric Cell Culture Substrates. Methods in Cell Biology, 2014, 119, 35-53.	1.1	3
132	Replication of Polymerâ€Based Peptide Microarrays by Multiâ€Step Transfer. ChemNanoMat, 2016, 2, 897-903.	2.8	3
133	Reversible Surface Engineering via Nitrone-Mediated Radical Coupling. Langmuir, 2018, 34, 3244-3255.	3.5	3
134	Mobility of charge carriers in self-assembled monolayers. Beilstein Journal of Nanotechnology, 2019, 10, 2449-2458.	2.8	3
135	A One tep Biofunctionalization Strategy of Electrospun Scaffolds Enables Spatially Selective Presentation of Biological Cues. Advanced Materials Technologies, 2020, 5, 2000269.	5.8	3
136	Sorption of Fulvic Acids onto Titanium Dioxide Nanoparticles Extracted from Commercial Sunscreens: ToF-SIMS and High-Dimensional Data Analysis. Coatings, 2022, 12, 335.	2.6	3
137	Determination of living cell characteristics and behavior using biophotonic methods. , 2006, , .		2
138	Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer. Applied Surface Science, 2016, 389, 942-951.	6.1	2
139	Combined in-depth X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectroscopy study of the effect of deposition pressure and substrate bias on the electrical properties and composition of Ga-doped ZnO thin films grown by magnetron sputtering. Thin Solid Films, 2018, 665, 184-192.	1.8	2
140	Thioacetateâ€Based Initiators for the Synthesis of Thiolâ€Endâ€Functionalized Poly(2â€oxazoline)s. Macromolecular Rapid Communications, 2020, 41, 2000320.	3.9	2
141	Anomalous bulk diffusion of methylene diphenyl diisocyanate in silicone elastomer. International Journal of Heat and Mass Transfer, 2021, 177, 121536.	4.8	1
142	Polymeric Tissue Culture Substrates patterned by UV Irradiation. Materials Research Society Symposia Proceedings, 2001, 711, 1.	0.1	0
143	Monolithical Integration of UV-induced Optical Polymer Waveguides for Fluorescence Applications in Biological Sciences. , 2010, , .		0
144	Macromol. Rapid Commun. 18/2015. Macromolecular Rapid Communications, 2015, 36, 1696-1696.	3.9	0

#	Article	IF	CITATIONS
145	Frontispiz: Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atom-Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, .	2.0	0
146	Microcavity Functionalization: Selective Functionalization of Microstructured Surfaces by Laserâ€Assisted Particle Transfer (Adv. Funct. Mater. 39/2016). Advanced Functional Materials, 2016, 26, 7026-7026.	14.9	0
147	Frontispiece: Bottom-Up Fabrication of Nanopatterned Polymers on DNA Origami by Inâ€Situ Atom-Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, .	13.8	0
148	Molecular Changes in Vaporâ€Based Polymer Thin Films Assessed by Characterization of Swelling Properties of Amineâ€Functionalized Poly―p â€xylylene. Macromolecular Chemistry and Physics, 2020, 221, 2000213.	2.2	0
149	Thin hydrogel coatings formation catalyzed by immobilized enzyme horseradish peroxidase. MRS Advances, 2020, 5, 773-783.	0.9	0