
Kelvin K T Goh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4049117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous low-temperature spray drying approach for efficient production of high quality native rice starch. Drying Technology, 2022, 40, 1758-1773.	1.7	6
2	Correlation between instrumental and sensory properties of textureâ€modified carrot puree. Journal of Texture Studies, 2022, 53, 72-80.	1.1	5
3	Effects of Xanthan Gum, Lambda-Carrageenan and Psyllium Husk on the Physical Characteristics and Glycaemic Potency of White Bread. Foods, 2022, 11, 1513.	1.9	4
4	High-Protein Foods for Dysphagia: Manipulation of Mechanical and Microstructural Properties of Whey Protein Gels Using De-Structured Starch and Salts. Gels, 2022, 8, 399.	2.1	6
5	Characterisation of de-structured starch and its shear-thickening mechanism. Food Hydrocolloids, 2022, 132, 107864.	5.6	3
6	Complexation of Anthocyanin-Bound Blackcurrant Pectin and Whey Protein: Effect of pH and Heat Treatment. Molecules, 2022, 27, 4202.	1.7	7
7	Enhancement of the gut-retention time of resveratrol using waxy maize starch nanocrystal-stabilized and chitosan-coated Pickering emulsions. Food Hydrocolloids, 2021, 112, 106291.	5.6	26
8	Spray drying of whey protein stabilized nanoemulsions containing different wall materials – maltodextrin or trehalose. LWT - Food Science and Technology, 2021, 136, 110344.	2.5	22
9	Rheology, Microstructure, and Storage Stability of Emulsion-Filled Gels Stabilized Solely by Maize Starch Modified with Octenyl Succinylation and Pregelatinization. Foods, 2021, 10, 837.	1.9	10
10	Characterization of Anthocyanin-Bound Pectin-Rich Fraction Extracted from New Zealand Blackcurrant (<i>Ribes nigrum</i>) Juice. ACS Food Science & Technology, 2021, 1, 1130-1142.	1.3	7
11	Effects of Spray-Drying Inlet Temperature on the Production of High-Quality Native Rice Starch. Processes, 2021, 9, 1557.	1.3	8
12	Molecular and physico-chemical characterization of de-structured waxy potato starch. Food Hydrocolloids, 2021, 117, 106667.	5.6	10
13	Effect of chia seed mucilage as stabiliser in ice cream. International Dairy Journal, 2021, 120, 105087.	1.5	18
14	Rheological characterization of a physically-modified waxy potato starch: Investigation of its shear-thickening mechanism. Food Hydrocolloids, 2021, 120, 106908.	5.6	17
15	Milk protein-polysaccharide interactions. , 2020, , 499-535.		10
16	The effect of gel structure on the <i>in vitro</i> digestibility of wheat starch- <i>Mesona chinensis</i> polysaccharide gels. Food and Function, 2019, 10, 250-258.	2.1	27
17	The interactions between wheat starch and Mesona chinensis polysaccharide: A study using solid-state NMR. Food Chemistry, 2019, 284, 67-72.	4.2	22
18	Molecular, rheological and physicochemical characterisation of puka gum, an arabinogalactan-protein extracted from the Meryta sinclairii tree. Carbohydrate Polymers, 2019, 220, 247-255.	5.1	14

Kelvin K T Goh

#	Article	IF	CITATIONS
19	Kernel structure in breads reduces in vitro starch digestion rate and estimated glycaemic potency only at high grain inclusion rates. Food Structure, 2019, 21, 100109.	2.3	10
20	Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals. Food Hydrocolloids, 2019, 94, 603-612.	5.6	41
21	The role of calcium in wheat starch-Mesona chinensis polysaccharide gels: Rheological properties, in vitro digestibility and enzyme inhibitory activities. LWT - Food Science and Technology, 2019, 99, 202-208.	2.5	19
22	Molecular interactions in composite wheat starch-Mesona chinensis polysaccharide gels: Rheological, textural, microstructural and retrogradation properties. Food Hydrocolloids, 2018, 79, 1-12.	5.6	54
23	Gastrointestinal digestion and stability of submicron-sized emulsions stabilized using waxy maize starch crystals. Food Hydrocolloids, 2018, 84, 343-352.	5.6	25
24	Understanding the interaction between wheat starch and Mesona chinensis polysaccharide. LWT - Food Science and Technology, 2017, 84, 212-221.	2.5	40
25	Formation and stability of single and bi-layer nanoemulsions using WPI and lactoferrin as interfacial coatings under different environmental conditions. Food Structure, 2017, 14, 60-67.	2.3	10
26	Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chemistry, 2017, 221, 1269-1276.	4.2	60
27	The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology. Carbohydrate Polymers, 2016, 149, 297-307.	5.1	100
28	Lipid droplet size and emulsification on postprandial glycemia, insulinemia and lipidemia. Food and Function, 2016, 7, 4278-4284.	2.1	15
29	Interfacial structures of whey protein isolate (WPI) and lactoferrin on hydrophobic surfaces in a model system monitored by quartz crystal microbalance with dissipation (QCM-D) and their formation on nanoemulsions. Food Hydrocolloids, 2016, 56, 150-160.	5.6	58
30	Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chemistry, 2016, 197, 297-306.	4.2	128
31	Time- and shear history-dependence of the rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris. Journal of Rheology, 2015, 59, 365-376.	1.3	10
32	Probing hydrogen bond interactions in a shear thickening polysaccharide using nonlinear shear and extensional rheology. Carbohydrate Polymers, 2015, 123, 136-145.	5.1	40
33	Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidia chinensis). Food Chemistry, 2015, 187, 290-296.	4.2	96
34	Effect of ultrasonication on low-acetylated gellan gum gel properties. Food Hydrocolloids, 2015, 49, 240-247.	5.6	17
35	The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide. Carbohydrate Polymers, 2015, 130, 57-68.	5.1	14
36	Characterization of gold kiwifruit pectin from fruit of different maturities and extraction methods. Food Chemistry, 2015, 166, 479-485.	4.2	74

Kelvin K T Goh

#	Article	IF	CITATIONS
37	Complex coacervation of an arabinogalactan-protein extracted from the Meryta sinclarii tree (puka) Tj ETQq	1 1 0.7 <u>8</u> 4314	rgBT /Overlo 46
38	Structure of a shear-thickening polysaccharide extracted from the New Zealand black tree fern, Cyathea medullaris. International Journal of Biological Macromolecules, 2014, 70, 86-91.	3.6	37
39	Phase stability-induced complex rheological behaviour of galactomannan and maltodextrin mixtures. Food and Function, 2013, 4, 627.	2.1	9
40	A natural shear-thickening water-soluble polymer from the fronds of the black tree fern, Cyathea medullaris: Influence of salt, pH and temperature. Carbohydrate Polymers, 2012, 87, 131-138.	5.1	32
41	Molecular characteristics of a novel water-soluble polysaccharide from the New Zealand black tree fern (Cyathea medullaris). Food Hydrocolloids, 2011, 25, 286-292.	5.6	29
42	Effect of Celluclast 1.5L on the Physicochemical Characterization of Gold Kiwifruit Pectin. International Journal of Molecular Sciences, 2011, 12, 6407-6417.	1.8	23
43	Properties of oil-in-water emulsions stabilized by β-lactoglobulin in simulated gastric fluid as influenced by ionic strength and presence of mucin. Food Hydrocolloids, 2010, 24, 534-541.	5.6	116
44	Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocolloids, 2009, 23, 1270-1278.	5.6	274
45	Behaviour of an oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocolloids, 2009, 23, 1563-1569.	5.6	311
46	Exploiting the Functionality of Lactic Acid Bacteria in Ice Cream. Food Biophysics, 2008, 3, 295-304.	1.4	11
47	Milk protein–polysaccharide interactions. , 2008, , 347-376.		10
48	Complex Rheological Properties of a Water-Soluble Extract from the Fronds of the Black Tree Fern, <i>Cyathea medullaris</i> . Biomacromolecules, 2007, 8, 3414-3421.	2.6	28
49	Characterisation and bioactivity of protein-bound polysaccharides from submerged-culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 393-402.	1.4	39
50	Rheological and Light Scattering Properties of Flaxseed Polysaccharide Aqueous Solutions. Biomacromolecules, 2006, 7, 3098-3103.	2.6	53
51	Characterisation of ice cream containing flaxseed oil. International Journal of Food Science and Technology, 2006, 41, 946-953.	1.3	36
52	Characterisation of a high acyl gellan polysaccharide using light scattering and rheological techniques. Food Hydrocolloids, 2006, 20, 176-183.	5.6	28
53	Viscometric and static light scattering studies on an exopolysaccharide produced byLactobacillus delbrueckii subspeciesbulgaricus NCFB 2483. Biopolymers, 2005, 77, 98-106.	1.2	29
54	Development of an improved procedure for isolation and purification of exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483. Applied Microbiology and Biotechnology, 2005, 67, 202-208.	1.7	31

#	Article	IF	CITATIONS
55	Evaluation and modification of existing methods for the quantification of exopolysaccharides in milk-based media. Food Research International, 2005, 38, 605-613.	2.9	32
56	Examination of Exopolysaccharide Produced by Lactobacillus delbrueckii subsp. bulgaricus Using Confocal Laser Scanning and Scanning Electron Microscopy Techniques. Journal of Food Science, 2005, 70, M224-M229.	1.5	17