Jose Lozano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4049072/publications.pdf

Version: 2024-02-01

1307366 1058333 23 209 7 14 citations g-index h-index papers 23 23 23 278 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 2018, 46, 1091-1100.	1.3	51
2	Realâ€time condition monitoring on VSDâ€fed induction motors through statistical analysis and synchronous speed observation. International Transactions on Electrical Energy Systems, 2015, 25, 1657-1672.	1.2	26
3	Directional Derivative-Based Transient Stability-Constrained Optimal Power Flow. IEEE Transactions on Power Systems, 2017, 32, 3415-3426.	4.6	21
4	Voltage compensator based on a direct matrix converter without energy storage. IET Power Electronics, 2015, 8, 321-332.	1.5	17
5	A Heuristic Home Electric Energy Management System Considering Renewable Energy Availability. Energies, 2019, 12, 671.	1.6	17
6	Comparative analysis to determine the accuracy of fractional derivatives in modeling supercapacitors. International Journal of Circuit Theory and Applications, 2019, 47, 1603-1614.	1.3	13
7	Optimal Dispatch Model for Demand Response Aggregators. Journal of Electrical Engineering and Technology, 2019, 14, 85-96.	1.2	9
8	Hybrid LQR-PI Control for Microgrids under Unbalanced Linear and Nonlinear Loads. Mathematics, 2020, 8, 1096.	1.1	9
9	Four-Step Current Commutation Strategy for a Matrix Converter Based on Enhanced-PWM MCU Peripherals. Electronics (Switzerland), 2019, 8, 547.	1.8	7
10	B-spline neural network for real and reactive power control of a wind turbine. Electrical Engineering, 2018, 100, 2799-2813.	1.2	6
11	Linearly Decoupled Control of a Dynamic Voltage Restorer without Energy Storage. Mathematics, 2020, 8, 1794.	1.1	6
12	A Two-Grid Interline Dynamic Voltage Restorer Based on Two Three-Phase Input Matrix Converters. Applied Sciences (Switzerland), 2021, 11, 561.	1.3	6
13	Generalized DC-DC multiplier converter topology. IEICE Electronics Express, 2012, 9, 1522-1527.	0.3	5
14	Two-Feeder Dynamic Voltage Restorer for Application in Custom Power Parks. Energies, 2019, 12, 3248.	1.6	5
15	Matrix Converter Based on SVD Modulation Using a Microcontroller as Unique Controlling Device. IEEE Access, 2019, 7, 164815-164824.	2.6	4
16	Analysis and Implementation of an 84-Pulse STATCOM. Power Systems, 2015, , 83-110.	0.3	2
17	A modified analysis of electrical energy consumption in University buildings. IEEE Latin America Transactions, 2017, 15, 408-414.	1.2	2
18	Load-side DVR based on matrix converter for deep voltage sags compensation. , 2017, , .		2

#	Article	IF	CITATIONS
19	Economic analysis of the energy consumption of a vending machine in a Mexican university building. Electrical Engineering, 2018, 100, 1509-1515.	1.2	1
20	Improving Power Quality by an Electronic Compensator. , 2006, , .		0
21	Using Onion Diagram for the Reduction of Water and Energy in Cooling Systems. IEEE Latin America Transactions, 2016, 14, 1829-1834.	1.2	O
22	Pressure Retarded Osmosis Power Units Modelling for Power Flow Analysis of Electric Distribution Networks. Energies, 2021, 14, 6649.	1.6	0
23	Digital Pole Control for Speed and Torque Variation in an Axial Flux Motor with Permanent Magnets. Electronics (Switzerland), 2022, 11, 482.	1.8	0