
Josip Bronić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404872/publications.pdf Version: 2024-02-01

Ιοςιρ Βρονιάτ

#	Article	IF	CITATIONS
1	Nanosized zeolite beta - Determining the safety of usage by zebrafish Danio rerio embryos. Microporous and Mesoporous Materials, 2020, 299, 110103.	4.4	3
2	Manganese soil and foliar fertilization of olive plantlets: the effect on leaf mineral and phenolic content and root mycorrhizal colonization. Journal of the Science of Food and Agriculture, 2019, 99, 360-367.	3.5	12
3	Controlled aggregation of core(amorphous silica)@shell(TPA+-polysilicate) nanoparticles at room temperature by selective removal of TPA+ ions from the nanoparticle shell. Inorganic Chemistry Frontiers, 2019, 6, 1639-1653.	6.0	8
4	Deep Insights into the Processes Occurring during Early Stages of the Formation and Room-Temperature Evolution of the Core (Amorphous SiO ₂)@Shell (Organocations) Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 9441-9454.	3.1	10
5	Synthetic Zeolite A as Zinc and Manganese Fertilizer in Calcareous Soil. Communications in Soil Science and Plant Analysis, 2018, 49, 1072-1082.	1.4	11
6	Coordination ability of amino acid hydrazide ligands and their influence on magnetic properties in copper(ii) coordination polymers. CrystEngComm, 2018, 20, 2396-2403.	2.6	5
7	Synthesis and structure characterization of zinc and cadmium dipeptide coordination polymers. New Journal of Chemistry, 2016, 40, 4252-4257.	2.8	13
8	Relation of the Aged Gels Microstructure on the Product (zeolite A) Particulate Properties. Acta Chimica Slovenica, 2015, 62, 130-5.	0.6	3
9	Formation mechanism of three-membered ring containing microporous zincosilicate RUB-17. CrystEngComm, 2015, 17, 7063-7069.	2.6	3
10	Structural and degradation studies of a biocompatible Zn-l-tartrate metal–organic framework. Journal of Solid State Chemistry, 2015, 225, 59-64.	2.9	11
11	Crystal structure of copper(<scp>ii</scp>) citrate monohydrate solved from a mixture powder X-ray diffraction pattern. Powder Diffraction, 2014, 29, 28-32.	0.2	3
12	Role of Subcolloidal (Nanosized) Precursor Species in the Early Stage of the Crystallization of Zeolites in Heterogeneous Systems. Langmuir, 2014, 30, 8570-8579.	3.5	29
13	Nucleation and crystal growth of zeolite A synthesised from hydrogels of different density. CrystEngComm, 2013, 15, 5784.	2.6	10
14	The relationship between sub-micrometer sized ZSM-5, slice-like (lamellar) keatite and hollow α-quartz particles: a phase transformation study. CrystEngComm, 2013, 15, 5032.	2.6	7
15	Anomalous nucleation events during crystallization of zeolite A under marginal alkalinities: a population balance analysis. CrystEngComm, 2012, 14, 3069.	2.6	8
16	Seed-Induced, Structure Directing Agent-Free Crystallization of Sub-Micrometer Zeolite ZSM-5: A Population Balance Analysis. Crystal Growth and Design, 2012, 12, 1736-1745.	3.0	26
17	Unusual Pathway of Crystallization of Zeolite ZSM-5 in a Heterogeneous System: Phenomenology and Starting Considerations. Chemistry of Materials, 2012, 24, 1726-1737.	6.7	97
18	Influence of alkalinity of the starting system on size and morphology of the zeolite A crystals. Materials Chemistry and Physics, 2012, 132, 973-976.	4.0	30

Josip Bronić

#	Article	IF	CITATIONS
19	Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 2: Influence of sodium ions and ageing of the reaction mixture on the chemical composition, crystallinity and particulate properties of the products. Microporous and Mesoporous Materials, 2012, 147, 229-241.	4.4	45
20	Zeolite A Synthesis under Dynamic Conditions, after Hydrogel Ageing. Croatica Chemica Acta, 2012, 85, 297-301.	0.4	3
21	New insights on the autocatalytic nucleation in zeolite A synthesis. CrystEngComm, 2011, 13, 1215-1220.	2.6	28
22	Controllable and SDA-free synthesis of sub-micrometer sized zeolite ZSM-5. Part 1: Influence of alkalinity on the structural, particulate and chemical properties of the products. Microporous and Mesoporous Materials, 2011, 139, 197-206.	4.4	69
23	Chemically controlled particulate properties of zeolites: Towards the face-less particles of zeolite A. 2. Influence of aluminosilicate batch concentration and alkalinity of the reaction mixture (hydrogel) on the size and shape of zeolite A crystals. Microporous and Mesoporous Materials, 2011, 142, 389-397.	4.4	38
24	Chemically controlled particulate properties of zeolites: Towards the face-less particles of zeolite A. Part 1. Influence of the batch molar ratio [SiO2/Al2O3] on the size and shape of zeolite A crystals. Microporous and Mesoporous Materials, 2011, 137, 72-82.	4.4	29
25	Theoretical and Practical Aspects of Zeolite Nucleation. , 2009, , 127-185.		6
26	Mechanism of crystallization of zeolite A microcrystals from initially clear aluminosilicate solution: A population balance analysis. Journal of Crystal Growth, 2008, 310, 4656-4665.	1.5	14
27	Influence of the freeze-drying of hydrogel on the critical processes occurring during crystallization of zeolite A – A new evidence of the gel "memory―effect. Microporous and Mesoporous Materials, 2007, 105, 65-74.	4.4	20
28	Mechanism and kinetics of the growth of zeolite microcrystals. Part 2: Influence of sodium ions concentration in the liquid phase on the growth kinetics of zeolite A microcrystals. Microporous and Mesoporous Materials, 2004, 76, 157-165.	4.4	22
29	Influence of anions on the kinetics of zeolite A crystallization:. Journal of Crystal Growth, 2004, 267, 270-282.	1.5	31
30	Experimental evidence of the "memory―effect of amorphous aluminosilicate gel precursors. Microporous and Mesoporous Materials, 2003, 64, 21-32.	4.4	20
31	Investigation of the influence of seeding on the crystallization of zeolite A in the membrane-type reactor. Microporous and Mesoporous Materials, 1999, 28, 73-82.	4.4	16
32	Analysis of the influence of kinetic and chemical factors on the rate of crystal growth of zeolite A. Studies in Surface Science and Catalysis, 1999, 125, 69-76.	1.5	6
33	Analysis of the distribution of nuclei in matrices of differently prepared and treated aluminosilicate gels. Studies in Surface Science and Catalysis, 1999, , 157-164.	1.5	7
34	Mechanochemistry of zeolites: Part 2. Change in particulate properties of zeolites during ball milling. Zeolites, 1995, 15, 247-252.	0.5	37
35	Mechanism of zeolite formation: Seed-gel interaction. Zeolites, 1994, 14, 250-255.	0.5	48
36	Mechanochemistry of zeolites: Part 1. Amorphization of zeolites A and X and synthetic mordenite by ball milling. Zeolites, 1993, 13, 261-268.	0.5	57