List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404868/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Acta Biomaterialia, 2023, 165, 72-85.                                                                   | 4.1 | 13        |
| 2  | Synthesis of Fast Curing, Waterâ€Resistant and Photopolymerizable Glass for Recording of Holographic<br>Structures by One―and Twoâ€Photon Lithography. Advanced Optical Materials, 2022, 10, 2102089.                   | 3.6 | 8         |
| 3  | A disulfide-based linker for thiol–norbornene conjugation: formation and cleavage of hydrogels by the use of light. Polymer Chemistry, 2022, 13, 1158-1168.                                                             | 1.9 | 4         |
| 4  | Beyond the Threshold: A Study of Chalcogenophene-Based Two-Photon Initiators. Chemistry of<br>Materials, 2022, 34, 3042-3052.                                                                                           | 3.2 | 14        |
| 5  | Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 207-222.                                    | 1.3 | 22        |
| 6  | Instrument for tensile testing of individual collagen fibrils with facile sample coupling and uncoupling. Review of Scientific Instruments, 2022, 93, 054103.                                                           | 0.6 | 3         |
| 7  | Guiding cell migration in 3D with high-resolution photografting. Scientific Reports, 2022, 12, .                                                                                                                        | 1.6 | 8         |
| 8  | Abstract 6245: 3D-models of pediatric bone sarcomas for personalized therapeutic screening. Cancer<br>Research, 2022, 82, 6245-6245.                                                                                    | 0.4 | 0         |
| 9  | Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of<br>biodegradable hexa-functional telechelic urethane-based poly-Îμ-caprolactone. Materials Today, 2021, 44,<br>25-39. | 8.3 | 28        |
| 10 | Thiol-norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing. Biofabrication, 2021, 13, 015017.                                                         | 3.7 | 34        |
| 11 | On-chip high-definition bioprinting of microvascular structures. Biofabrication, 2021, 13, 015016.                                                                                                                      | 3.7 | 36        |
| 12 | Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular<br>Design. Biomacromolecules, 2021, 22, 4919-4932.                                                                       | 2.6 | 6         |
| 13 | Thiol–Gelatin–Norbornene Bioink for Laserâ€Based Highâ€Definition Bioprinting. Advanced Healthcare<br>Materials, 2020, 9, e1900752.                                                                                     | 3.9 | 75        |
| 14 | Novel synthesis routes for the preparation of low toxic vinyl ester and vinyl carbonate monomers.<br>Synthetic Communications, 2020, 50, 3629-3641.                                                                     | 1.1 | 3         |
| 15 | High-Resolution 3D Bioprinting of Photo-Cross-linkable Recombinant Collagen to Serve Tissue<br>Engineering Applications. Biomacromolecules, 2020, 21, 3997-4007.                                                        | 2.6 | 51        |
| 16 | Enhancing cell packing in buckyballs by acoustofluidic activation. Biofabrication, 2020, 12, 025033.                                                                                                                    | 3.7 | 12        |
| 17 | Hyaluronic acid vinyl esters: A toolbox toward controlling mechanical properties of hydrogels for<br>3D microfabrication. Journal of Polymer Science, 2020, 58, 1288-1298.                                              | 2.0 | 20        |
| 18 | 3D Printing of large-scale and highly porous biodegradable tissue engineering scaffolds from poly(trimethylene-carbonate) using two-photon-polymerization. Biofabrication, 2020, 12, 045036.                            | 3.7 | 55        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Functional 3D Printing for Microfluidic Chips. Advanced Materials Technologies, 2019, 4, 1900275.                                                                              | 3.0 | 136       |
| 20 | (Photo-)crosslinkable gelatin derivatives for biofabrication applications. Acta Biomaterialia, 2019, 97,<br>46-73.                                                             | 4.1 | 120       |
| 21 | Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids.<br>Tissue Engineering - Part A, 2019, 25, 1369-1380.                        | 1.6 | 71        |
| 22 | Photo-crosslinkable recombinant collagen mimics for tissue engineering applications. Journal of Materials Chemistry B, 2019, 7, 3100-3108.                                     | 2.9 | 31        |
| 23 | α-Ketoesters as Nonaromatic Photoinitiators for Radical Polymerization of (Meth)acrylates.<br>Macromolecules, 2019, 52, 2814-2821.                                             | 2.2 | 24        |
| 24 | Screening of two-photon activated photodynamic therapy sensitizers using a 3D osteosarcoma model.<br>Analyst, The, 2019, 144, 3056-3063.                                       | 1.7 | 22        |
| 25 | Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties. Molecular Systems Design and Engineering, 2019, 4, 437-448.  | 1.7 | 16        |
| 26 | Fully automated z-scan setup based on a tunable fs-oscillator. Optical Materials Express, 2019, 9, 3567.                                                                       | 1.6 | 12        |
| 27 | The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies. Trends in<br>Biotechnology, 2018, 36, 348-357.                                                  | 4.9 | 231       |
| 28 | Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar<br>Aminostyryl-1,3,5-triazines. Scientific Reports, 2018, 8, 17273.                        | 1.6 | 32        |
| 29 | A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte<br>Chemie, 2018, 130, 15342-15347.                                            | 1.6 | 15        |
| 30 | A Modular Approach to Sensitized Twoâ€Photon Patterning of Photodegradable Hydrogels. Angewandte<br>Chemie - International Edition, 2018, 57, 15122-15127.                     | 7.2 | 68        |
| 31 | Commercial 3D Bioprinters. , 2018, , 535-549.                                                                                                                                  |     | 5         |
| 32 | Dispersive white light continuum single Z-scan for rapid determination of degenerate two-photon absorption spectra. Applied Physics B: Lasers and Optics, 2018, 124, 142.      | 1.1 | 5         |
| 33 | Calibration of colloidal probes with atomic force microscopy for micromechanical assessment.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 225-236. | 1.5 | 13        |
| 34 | A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells <i>via</i> two-photon polymerization. Polymer Chemistry, 2018, 9, 3108-3117.             | 1.9 | 55        |
| 35 | Highly Reactive Thiolâ€Norbornene Photoâ€Click Hydrogels: Toward Improved Processability.<br>Macromolecular Rapid Communications, 2018, 39, e1800181.                          | 2.0 | 77        |
|    |                                                                                                                                                                                |     |           |

Commercial 3D Bioprinters. , 2018, , 1-16.

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization. International Journal of Bioprinting, 2018, 4, 144.                     | 1.7 | 69        |
| 38 | Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel. Chemistry of Materials, 2017, 29, 5816-5823.                                                            | 3.2 | 119       |
| 39 | Flexible oligomer spacers as the key to solid-state photopolymerization of hydrogel precursors.<br>Materials Today Chemistry, 2017, 4, 84-89.                                                    | 1.7 | 17        |
| 40 | A biocompatible macromolecular two-photon initiator based on hyaluronan. Polymer Chemistry, 2017,<br>8, 451-460.                                                                                 | 1.9 | 49        |
| 41 | Durch sichtbares Licht und Nahinfrarotstrahlung abbaubare supramolekulare Metalloâ€Gele.<br>Angewandte Chemie, 2017, 129, 16071-16075.                                                           | 1.6 | 12        |
| 42 | Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan. Applied Physics Letters, 2017, 111, .    | 1.5 | 14        |
| 43 | Cross-Linkable Gelatins with Superior Mechanical Properties Through Carboxylic Acid Modification:<br>Increasing the Two-Photon Polymerization Potential. Biomacromolecules, 2017, 18, 3260-3272. | 2.6 | 104       |
| 44 | Metalloâ€6upramolecular Gels that are Photocleavable with Visible and Nearâ€Infrared Irradiation.<br>Angewandte Chemie - International Edition, 2017, 56, 15857-15860.                           | 7.2 | 62        |
| 45 | Highly efficient water-soluble visible light photoinitiators. Journal of Polymer Science Part A, 2016, 54, 473-479.                                                                              | 2.5 | 107       |
| 46 | Modular material system for the microfabrication of biocompatible hydrogels based on<br>thiol-ene-modified poly(vinyl alcohol). Journal of Polymer Science Part A, 2016, 54, 2060-2070.          | 2.5 | 36        |
| 47 | Bioink properties before, during and after 3D bioprinting. Biofabrication, 2016, 8, 032002.                                                                                                      | 3.7 | 783       |
| 48 | Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers. Nanotechnology, 2016, 27, 154001.                                                                                      | 1.3 | 52        |
| 49 | Delivery of Human Adipose Stem Cells Spheroids into Lockyballs. PLoS ONE, 2016, 11, e0166073.                                                                                                    | 1.1 | 36        |
| 50 | Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell<br>Photoencapsulation. Journal of Nanotechnology in Engineering and Medicine, 2015, 6, 0210011-210017. | 0.8 | 59        |
| 51 | Evidence of concentration dependence of the two-photon absorption cross section: Determining the<br>"true―cross section value. Optical Materials, 2015, 47, 524-529.                             | 1.7 | 11        |
| 52 | Laser 3D Printing with Subâ€Microscale Resolution of Porous Elastomeric Scaffolds for Supporting<br>Human Bone Stem Cells. Advanced Healthcare Materials, 2015, 4, 739-747.                      | 3.9 | 65        |
| 53 | Additive manufacturing of photosensitive hydrogels for tissue engineering applications.<br>BioNanoMaterials, 2014, 15, .                                                                         | 1.4 | 76        |
| 54 | Connections Matter: Channeled Hydrogels to Improve Vascularization. Frontiers in Bioengineering and Biotechnology, 2014, 2, 52.                                                                  | 2.0 | 31        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Laser Photofabrication of Cell-Containing Hydrogel Constructs. Langmuir, 2014, 30, 3787-3794.                                                                                                                | 1.6 | 159       |
| 56 | Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polymer Chemistry, 2014, 5, 6523-6533.                           | 1.9 | 68        |
| 57 | Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds. , 2014, , 149-201.                                                                                              |     | 16        |
| 58 | 3D alkyne–azide cycloaddition: spatiotemporally controlled by combination of aryl azide photochemistry and two-photon grafting. Chemical Communications, 2013, 49, 7635.                                     | 2.2 | 18        |
| 59 | Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. Journal of Polymer Science Part A, 2013, 51, 4799-4810.                                | 2.5 | 74        |
| 60 | Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct<br>3D microfabrication of hydrogels. RSC Advances, 2013, 3, 15939.                                       | 1.7 | 117       |
| 61 | Hydrogels for Twoâ€Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix.<br>Advanced Functional Materials, 2013, 23, 4542-4554.                                                           | 7.8 | 191       |
| 62 | 3D photografting with aromatic azides: A comparison between three-photon and two-photon case.<br>Optical Materials, 2013, 35, 1846-1851.                                                                     | 1.7 | 13        |
| 63 | The effects of geometry on skin penetration and failure of polymer microneedles. Journal of Adhesion<br>Science and Technology, 2013, 27, 227-243.                                                           | 1.4 | 118       |
| 64 | Urokinase Receptor Associates With Myocardin to Control Vascular Smooth Muscle Cells Phenotype<br>in Vascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 110-122.                | 1.1 | 31        |
| 65 | Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses. Optical<br>Materials Express, 2012, 2, 942.                                                                         | 1.6 | 98        |
| 66 | Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. Journal of Laser Applications, 2012, 24, .                             | 0.8 | 83        |
| 67 | Design, physical prototyping and initial characterisation of â€~lockyballs'. Virtual and Physical<br>Prototyping, 2012, 7, 287-301.                                                                          | 5.3 | 32        |
| 68 | Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications. Expert Review of Medical Devices, 2012, 9, 613-633.                            | 1.4 | 140       |
| 69 | 3D Photografting: Selective Functionalization of 3D Matrices Via Multiphoton Grafting and<br>Subsequent Click Chemistry (Adv. Funct. Mater. 16/2012). Advanced Functional Materials, 2012, 22,<br>3527-3527. | 7.8 | 5         |
| 70 | Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms. Journal of Biomedical Optics, 2012, 17, 1.                                                        | 1.4 | 117       |
| 71 | Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry.<br>Advanced Functional Materials, 2012, 22, 3429-3433.                                                   | 7.8 | 34        |
| 72 | 3D grafting via three-photon induced photolysis of aromatic azides. Applied Physics A: Materials<br>Science and Processing, 2012, 108, 29-34.                                                                | 1.1 | 10        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Three-Dimensional Microfabrication by Two-Photon Polymerization Technique. Methods in Molecular<br>Biology, 2012, 868, 311-325.                                                                                | 0.4 | 19        |
| 74 | Photonic and Biomedical Applications of the Two-Photon Polymerization Technique. , 2011, , 257-297.                                                                                                            |     | 0         |
| 75 | Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy. Journal of Applied Physics, 2011, 110, .                                                                | 1.1 | 47        |
| 76 | Laser Fabrication of Three-Dimensional CAD Scaffolds from Photosensitive Gelatin for Applications in Tissue Engineering. Biomacromolecules, 2011, 12, 851-858.                                                 | 2.6 | 273       |
| 77 | Multiphoton microscopy of transdermal quantum dot delivery using two<br>photonpolymerization-fabricated polymer microneedles. Faraday Discussions, 2011, 149, 171-185.                                         | 1.6 | 70        |
| 78 | Influence of hybrid organic–inorganic sol–gel matrices on the photophysics of amino-functionalized<br>UV-sensitizers. Journal of Materials Science, 2011, 46, 400-408.                                         | 1.7 | 17        |
| 79 | Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomaterialia, 2011, 7, 967-974. | 4.1 | 212       |
| 80 | Laser-based nanoengineering of surface topographies for biomedical applications. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 159-162.                                               | 1.0 | 14        |
| 81 | Controlled self-formation of nanofibers and nanomembranes in polymers induced by laser direct writing. , 2011, , .                                                                                             |     | Ο         |
| 82 | Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues. Materials, 2011, 4, 288-299.                                                                                            | 1.3 | 130       |
| 83 | Fabrication of Microneedles Using Two Photon Polymerization for Transdermal Delivery of Nanomaterials. Journal of Nanoscience and Nanotechnology, 2010, 10, 6305-6312.                                         | 0.9 | 52        |
| 84 | Three-dimensional direct writing of novel sol-gel composites for photonics applications.<br>International Journal of Nanomanufacturing, 2010, 6, 164.                                                          | 0.3 | 0         |
| 85 | Laser printing of cells into 3D scaffolds. Biofabrication, 2010, 2, 014104.                                                                                                                                    | 3.7 | 231       |
| 86 | Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication. Applied Physics A: Materials Science and Processing, 2010, 100, 359-364.                      | 1.1 | 74        |
| 87 | Two Photon Polymerizationâ€Micromolding of Polyethylene Glycolâ€Gentamicin Sulfate Microneedles.<br>Advanced Engineering Materials, 2010, 12, B77-B82.                                                         | 1.6 | 60        |
| 88 | Two-photon polymerization of microneedles for transdermal drug delivery. Expert Opinion on Drug<br>Delivery, 2010, 7, 513-533.                                                                                 | 2.4 | 122       |
| 89 | Optically trapped probes with nanometer-scale tips for femto-Newton force measurement. New<br>Journal of Physics, 2010, 12, 113056.                                                                            | 1.2 | 36        |
| 90 | Microreplication of laser-fabricated surface and three-dimensional structures. Journal of Optics<br>(United Kingdom), 2010, 12, 124009.                                                                        | 1.0 | 27        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Fabrication of Polymer Microneedles Using a Two-Photon Polymerization and Micromolding Process.<br>Journal of Diabetes Science and Technology, 2009, 3, 304-311.                       | 1.3 | 100       |
| 92  | Rapid Prototyping of Biomimetic Structures: Fabrication of Mosquito-like Microneedles by<br>Two-Photon Polymerization. Materials Research Society Symposia Proceedings, 2009, 1239, 1. | 0.1 | 4         |
| 93  | Three-Dimensional Biodegradable Structures Fabricated by Two-Photon Polymerization. Langmuir, 2009, 25, 3219-3223.                                                                     | 1.6 | 177       |
| 94  | Rapid prototyping of scaphoid and lunate bones. Biotechnology Journal, 2009, 4, 129-134.                                                                                               | 1.8 | 42        |
| 95  | Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications.<br>Journal of the Optical Society of America B: Optical Physics, 2009, 26, B130.         | 0.9 | 49        |
| 96  | Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Optics Express, 2009, 17, 2143.                                        | 1.7 | 121       |
| 97  | Direct laser writing of photonic nanostructures. , 2009, , .                                                                                                                           |     | 1         |
| 98  | Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication, 2009, 1, 041001.                                                                     | 3.7 | 70        |
| 99  | Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Applied Physics A: Materials Science and Processing, 2008, 93, 11-15. | 1.1 | 51        |
| 100 | Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization<br>Microfabrication. ACS Nano, 2008, 2, 2257-2262.                                                    | 7.3 | 443       |
| 101 | Directed Three-Dimensional Patterning of Self-Assembled Peptide Fibrils. Nano Letters, 2008, 8, 538-543.                                                                               | 4.5 | 125       |
| 102 | Two-Photon Polymerization – High Resolution 3D Laser Technology and Its Applications.<br>Nanostructure Science and Technology, 2008, , 427-446.                                        | 0.1 | 8         |
| 103 | 3D photofabrication by femtosecond laser pulses and its applications in photonics and biomedicine. , 2007, , .                                                                         |     | 0         |
| 104 | 3D photofabrication by femtosecond laser pulses and its applications in photonics and biomedicine. , 2007, , .                                                                         |     | 1         |
| 105 | Two-photon polymerization for fabrication of biomedical devices. , 2007, , .                                                                                                           |     | 6         |
| 106 | Investigation of optical properties of circular spiral photonic crystals. Optics Express, 2007, 15, 13236.                                                                             | 1.7 | 4         |
| 107 | Three-Dimensional Cell Growth on Structures Fabricated from ORMOCER® by Two-Photon<br>Polymerization Technique. Journal of Biomaterials Applications, 2007, 22, 275-287.               | 1.2 | 102       |
|     |                                                                                                                                                                                        |     |           |

108 Three Dimensional Material Processing with Femtosecond Lasers. , 2007, , 121-157.

23

| #   | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Applied Surface Science, 2007, 253, 6599-6602.                                                                                                    | 3.1 | 114       |
| 110 | Rapid prototyping of ossicular replacement prostheses. Applied Surface Science, 2007, 253, 6603-6607.                                                                                                                                                       | 3.1 | 65        |
| 111 | Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. Journal of Tissue Engineering and Regenerative Medicine, 2007, 1, 443-449.                                      | 1.3 | 172       |
| 112 | Investigations on the generation of photonic crystals using twoâ€photon polymerization (2PP) of<br>inorganic–organic hybrid polymers with ultraâ€short laser pulses. Physica Status Solidi (A)<br>Applications and Materials Science, 2007, 204, 3662-3675. | 0.8 | 32        |
| 113 | Two Photon Polymerization of Polymer?Ceramic Hybrid Materials for Transdermal Drug Delivery.<br>International Journal of Applied Ceramic Technology, 2007, 4, 22-29.                                                                                        | 1.1 | 200       |
| 114 | Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices. Acta Biomaterialia, 2006, 2, 267-275.                                                                                                       | 4.1 | 207       |
| 115 | Study of Polymeric Microneedle Arrays for Drug Delivery. Materials Research Society Symposia<br>Proceedings, 2006, 950, 1.                                                                                                                                  | 0.1 | 0         |
| 116 | Laser Processing of Advanced Bioceramics. Advanced Engineering Materials, 2005, 7, 1083-1098.                                                                                                                                                               | 1.6 | 67        |
| 117 | Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Optics Express, 2004, 12, 5221.                                                                                                              | 1.7 | 309       |
| 118 | Three-Dimensional Nanostructuring With Femtosecond Laser Pulses. IEEE Nanotechnology Magazine, 2004, 3, 468-472.                                                                                                                                            | 1.1 | 20        |