Connie J Eaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4048560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Postnatal conservation of human blood- and marrow-specific CD34+ hematopoietic phenotypes. Experimental Hematology, 2022, , .	0.4	0
2	Modification of BRCA1-associated breast cancer risk by HMMR overexpression. Nature Communications, 2022, 13, 1895.	12.8	19
3	Pathogenic BRCA1 variants disrupt PLK1-regulation of mitotic spindle orientation. Nature Communications, 2022, 13, 2200.	12.8	3
4	Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. Journal of Cell Biology, 2022, 221, .	5.2	99
5	Epigenetic and functional changes imposed by NUP98-HOXA9 in a genetically engineered model of chronic myeloid leukemia progression. Haematologica, 2021, 106, 881-885.	3.5	1
6	Mammary epithelial cells have lineage-rooted metabolic identities. Nature Metabolism, 2021, 3, 665-681.	11.9	24
7	A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood, 2021, 137, 3403-3415.	1.4	8
8	De novo and cell line models of human mammary cell transformation reveal an essential role for Yb-1 in multiple stages of human breast cancer. Cell Death and Differentiation, 2021, , .	11.2	2
9	Single-Cell Analysis of Human B Lymphoid and Neutrophil/Monocyte Lineage Restriction. Blood, 2021, 138, 4291-4291.	1.4	0
10	Initiation of human mammary cell tumorigenesis by mutant KRAS requires YAP inactivation. Oncogene, 2020, 39, 1957-1968.	5.9	18
11	Single-cell analysis of autophagy activity in normal and de novo transformed human mammary cells. Scientific Reports, 2020, 10, 20266.	3.3	2
12	Age-correlated protein and transcript expression in breast cancer and normal breast tissues is dominated by host endocrine effects. Nature Cancer, 2020, 1, 518-532.	13.2	11
13	Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell, 2020, 27, 110-124.e9.	11.1	29
14	MYC-induced human acute myeloid leukemia requires a continuing IL-3/GM-CSF costimulus. Blood, 2020, 136, 2764-2773.	1.4	15
15	Clonal origin in normal adults of all blood lineages and circulating hematopoietic stem cells. Experimental Hematology, 2020, 83, 25-34.e2.	0.4	3
16	Guest Editorial. Experimental Hematology, 2020, 83, 1.	0.4	0
17	Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice. Blood, 2020, 135, 2235-2251.	1.4	35
18	The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML Blood, 2020, 136, 596-609	1.4	30

#	Article	IF	CITATIONS
19	Cancer Stem Cells: Notes for Authors. Stem Cell Reports, 2020, 14, 167-168.	4.8	1
20	3013 – AGE-ASSOCIATED DIFFERENCES IN HUMAN HEMATOPOIETIC STEM CELL PROLIFERATION CONTROL REVEALED BY A NOVEL MULTIPARAMETER SINGLE-CELL ANALYSIS APPROACH. Experimental Hematology, 2020, 88, S41-S42.	0.4	0
21	3105 – ENHANCED OUTPUT OF PRIMITIVE HEMATOPOIETIC CELL PHENOTYPES IN TERATOMAS GENERATED FROM HUMAN INDUCED PLURIPOTENT STEM CELLS (HIPSCS) IN MORE PERMISSIVE IMMUNODEFICIENT MICE. Experimental Hematology, 2020, 88, S71.	0.4	0
22	Single Cell Immune Profiling Reveals Distinct T Cell Clones and Functional States in in-Vitro Expanded Cord Blood Derived Gamma Delta T Cells. Blood, 2020, 136, 35-36.	1.4	1
23	Synthetic modeling reveals HOXB genes are critical for the initiation and maintenance of human leukemia. Nature Communications, 2019, 10, 2913.	12.8	8
24	Response to Comment on "PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL ⁺ human leukemia― Science Translational Medicine, 2019, 11, .	12.4	3
25	Clonal Analysis of Mouse Mammary Luminal Epithelial Cell Transplants. Stem Cells and Development, 2019, 28, 353-355.	2.1	0
26	Introduction. Experimental Hematology, 2019, 71, 1-2.	0.4	1
27	Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Advances, 2019, 3, 3201-3213.	5.2	15
28	A topological view of human CD34+ cell state trajectories from integrated single-cell output and proteomic data. Blood, 2019, 133, 927-939.	1.4	17
29	Transcriptional regulation of normal human mammary cell heterogeneity and its perturbation in breast cancer. EMBO Journal, 2019, 38, e100330.	7.8	35
30	PP2A inhibition sensitizes cancer stem cells to ABL tyrosine kinase inhibitors in BCR-ABL ⁺ human leukemia. Science Translational Medicine, 2018, 10, .	12.4	37
31	Breast Cancers Activate Stromal Fibroblast-Induced Suppression ofÂProgenitors in Adjacent Normal Tissue. Stem Cell Reports, 2018, 10, 196-211.	4.8	21
32	A Prospective Analysis of Human Leukemogenesis. Stem Cell Reports, 2018, 11, 1034-1039.	4.8	5
33	Epigenetic Restoration of Fetal-like IGF1 Signaling Inhibits Leukemia Stem Cell Activity. Cell Stem Cell, 2018, 23, 714-726.e7.	11.1	19
34	Phenotype-independent DNA methylation changes in prostate cancer. British Journal of Cancer, 2018, 119, 1133-1143.	6.4	14
35	Plerixafor effectively mobilizes CD56bright NK cells in blood, providing an allograft predicted to protect against GVHD. Blood, 2018, 131, 2863-2866.	1.4	12
36	Single-cell analysis identifies a CD33+ subset of human cord blood cells with high regenerative potential. Nature Cell Biology, 2018, 20, 710-720.	10.3	36

#	Article	IF	CITATIONS
37	Macrophages stimulate mammary stem cells. Science, 2018, 360, 1401-1402.	12.6	11
38	High-Resolution Single-Cell DNA Methylation Measurements Reveal Epigenetically Distinct Hematopoietic Stem Cell Subpopulations. Stem Cell Reports, 2018, 11, 578-592.	4.8	79
39	Basal-like Breast Cancers: From Pathology to Biology and Back Again. Stem Cell Reports, 2018, 10, 1676-1686.	4.8	25
40	Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells. Stem Cell Reports, 2017, 8, 152-162.	4.8	22
41	Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Experimental Hematology, 2017, 48, 41-49.	0.4	32
42	Stability of patient-specific features of altered DNA replication timing in xenografts of primary human acute lymphoblastic leukemia. Experimental Hematology, 2017, 51, 71-82.e3.	0.4	28
43	Whole-genome analysis reveals unexpected dynamics of mutant subclone development in a patient with JAK2-V617F-positive chronic myeloid leukemia. Experimental Hematology, 2017, 53, 48-58.	0.4	15
44	Modeling the process of human tumorigenesis. Nature Communications, 2017, 8, 15422.	12.8	55
45	Distinct signaling programs control human hematopoietic stem cell survival and proliferation. Blood, 2017, 129, 307-318.	1.4	35
46	Mass Cytometric Analysis Reveals Viable Activated Caspase-3+ Luminal Progenitors in the Normal Adult Human Mammary Gland. Cell Reports, 2017, 21, 1116-1126.	6.4	20
47	Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature, 2017, 549, 227-232.	27.8	321
48	BRCA1 controls the cell division axis and governs ploidy and phenotype in human mammary cells. Oncotarget, 2017, 8, 32461-32475.	1.8	14
49	Adult Hematopoiesis. , 2016, , 15-25.		0
50	Early production of human neutrophils and platelets posttransplant isÂseverelyÂcompromised by growth factor exposure. Experimental Hematology, 2016, 44, 635-640.	0.4	9
51	Quantitation of Human Cells that Produce Neutrophils and Platelets in Vivo Obtained from Normal Donors Treated with Granulocyte Colony–Stimulating Factor and/or Plerixafor. Biology of Blood and Marrow Transplantation, 2016, 22, 1945-1952.	2.0	3
52	Hematopoietic Stem Cells Are the Major Source of Multilineage Hematopoiesis in Adult Animals. Immunity, 2016, 45, 597-609.	14.3	317
53	Isolation and Assessment of Single Longâ€Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow. Current Protocols in Stem Cell Biology, 2016, 38, 2A.4.1-2A.4.24.	3.0	15
54	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404

#	Article	IF	CITATIONS
55	Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility. Cell Reports, 2016, 17, 2112-2124.	6.4	46
56	Analysis of Normal Human Mammary Epigenomes Reveals Cell-Specific Active Enhancer States and Associated Transcription Factor Networks. Cell Reports, 2016, 17, 2060-2074.	6.4	90
57	Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression. Blood, 2015, 125, 504-515.	1.4	31
58	Hematopoietic stem cells: concepts, definitions, and the new reality. Blood, 2015, 125, 2605-2613.	1.4	407
59	A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation. Breast Cancer Research, 2015, 17, 4.	5.0	24
60	Characterization of Epithelial Progenitors in Normal Human Palatine Tonsils and Their HPV16 E6/E7-Induced Perturbation. Stem Cell Reports, 2015, 5, 1210-1225.	4.8	16
61	Modeling Normal and Disordered Human Hematopoiesis. Trends in Cancer, 2015, 1, 199-210.	7.4	10
62	A novel population of local pericyte precursor cells in tumor stroma that require Notch signaling for differentiation. Microvascular Research, 2015, 101, 38-47.	2.5	14
63	Dominant-negative IKAROS enhances IL-3-stimulated signaling in wild-type but not BCR-ABL1+ mouse BA/F3 cells. Experimental Hematology, 2015, 43, 514-523.e2.	0.4	3
64	Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature, 2015, 528, 267-271.	27.8	101
65	RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports, 2015, 5, 31-44.	4.8	64
66	Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature, 2015, 518, 422-426.	27.8	545
67	Control of the hematopoietic stem cell state. Cell Research, 2014, 24, 3-4.	12.0	6
68	A Dominant-Negative Isoform of IKAROS Expands Primitive Normal Human Hematopoietic Cells. Stem Cell Reports, 2014, 3, 841-857.	4.8	22
69	DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts. Nature Communications, 2014, 5, 5871.	12.8	86
70	Glutathione-dependent and -independent oxidative stress-control mechanisms distinguish normal human mammary epithelial cell subsets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7789-7794.	7.1	76
71	Clonal Analysis via Barcoding Reveals Diverse Growth and Differentiation of Transplanted Mouse and Human Mammary Stem Cells. Cell Stem Cell, 2014, 14, 253-263.	11.1	57
72	Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 2014, 345, 1509-1512.	12.6	470

#	Article	IF	CITATIONS
73	Hierarchical organization of fetal and adult hematopoietic stem cells. Experimental Cell Research, 2014, 329, 185-191.	2.6	66
74	Tipping the Balance: MTDH-SND1 Curbs Oncogene-Induced Apoptosis and Promotes Tumorigenesis. Cell Stem Cell, 2014, 15, 118-120.	11.1	12
75	ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nature Cell Biology, 2014, 16, 1004-1015.	10.3	176
76	Distinct Stromal Cell Factor Combinations Can Separately Control Hematopoietic Stem Cell Survival, Proliferation, and Self-Renewal. Cell Reports, 2014, 7, 1956-1967.	6.4	45
77	Modeling de novo leukemogenesis from human cord blood with MN1 and NUP98HOXD13. Blood, 2014, 124, 3608-3612.	1.4	23
78	Cell Fate Decisions in Malignant Hematopoiesis: Leukemia Phenotype Is Determined by Distinct Functional Domains of the MN1 Oncogene. PLoS ONE, 2014, 9, e112671.	2.5	15
79	Genotypic and functional diversity of phenotypically defined primitive hematopoietic cells in patients with chronic myeloid leukemia. Experimental Hematology, 2013, 41, 837-847.	0.4	11
80	The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells. Nature Cell Biology, 2013, 15, 916-925.	10.3	292
81	Human Long-Term Culture Initiating Cell Assay. Methods in Molecular Biology, 2013, 946, 241-256.	0.9	24
82	The Luminal Progenitor Compartment of the Normal Human Mammary Gland Constitutes a Unique Site of Telomere Dysfunction. Stem Cell Reports, 2013, 1, 28-37.	4.8	50
83	Long-Term Culture-Initiating Cell Assay for Mouse Cells. Methods in Molecular Biology, 2013, 946, 257-266.	0.9	7
84	Stem Cells and the Developing Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 209-219.	2.7	39
85	Targeting Primitive Chronic Myeloid Leukemia Cells by Effective Inhibition of a New AHI-1–BCR-ABL–JAK2 Complex. Journal of the National Cancer Institute, 2013, 105, 405-423.	6.3	71
86	Developmental Changes in the in Vitro Activated Regenerative Activity of Primitive Mammary Epithelial Cells. PLoS Biology, 2013, 11, e1001630.	5.6	53
87	Heterogeneity in hematopoietic stem cell populations. Current Opinion in Hematology, 2013, 20, 257-264.	2.5	24
88	Developmental changes in hematopoietic stem cell properties. Experimental and Molecular Medicine, 2013, 45, e55-e55.	7.7	83
89	Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors. Blood, 2013, 121, e1-e4.	1.4	51
90	Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice. Blood, 2013, 122, 3129-3137.	1.4	90

#	Article	IF	CITATIONS
91	Identification of novel small molecule inhibitors of centrosome clustering in cancer cells. Oncotarget, 2013, 4, 1763-1776.	1.8	35
92	Distinct but phenotypically heterogeneous human cell populations produce rapid recovery of platelets and neutrophils after transplantation. Blood, 2012, 119, 3431-3439.	1.4	23
93	NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-Î, and reactive oxygen species. Nature Medicine, 2012, 18, 1693-1698.	30.7	81
94	Hematopoietic Stem Cell Subtypes Expand Differentially during Development and Display Distinct Lymphopoietic Programs. Cell Stem Cell, 2012, 10, 273-283.	11.1	277
95	Hematopoietic Stem Cell Heterogeneity Takes Center Stage. Cell Stem Cell, 2012, 10, 690-697.	11.1	159
96	Cancer stem cell definitions and terminology: the devil is in the details. Nature Reviews Cancer, 2012, 12, 767-775.	28.4	599
97	Aldehyde Dehydrogenase Activity Is a Biomarker of Primitive Normal Human Mammary Luminal Cells. Stem Cells, 2012, 30, 344-348.	3.2	70
98	The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012, 486, 395-399.	27.8	1,778
99	High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nature Methods, 2011, 8, 581-586.	19.0	299
100	Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood, 2010, 116, 2112-2121.	1.4	56
101	Quantitation of human mammary epithelial stem cells with in vivo regenerative properties using a subrenal capsule xenotransplantation assay. Nature Protocols, 2010, 5, 1945-1956.	12.0	33
102	Molecular Decoy to the Y-Box Binding Protein-1 Suppresses the Growth of Breast and Prostate Cancer Cells whilst Sparing Normal Cell Viability. PLoS ONE, 2010, 5, e12661.	2.5	41
103	Human Milk Protein Production in Xenografts of Genetically Engineered Bovine Mammary Epithelial Stem Cells. PLoS ONE, 2010, 5, e13372.	2.5	42
104	Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood, 2009, 113, 6342-6350.	1.4	300
105	Here, there, everywhere?. Nature, 2008, 456, 581-582.	27.8	81
106	A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Medicine, 2008, 14, 1384-1389.	30.7	298
107	Molecular profiling reveals similarities and differences between primitive subsets of hematopoietic cells generated in vitro from human embryonic stem cells and in vivo during embryogenesis. Experimental Hematology, 2008, 36, 1377-1389.	0.4	17
108	Transcriptome Analysis of the Normal Human Mammary Cell Commitment and Differentiation Process. Cell Stem Cell, 2008, 3, 109-118.	11.1	310

#	Article	IF	CITATIONS
109	Characterization of Mouse Hematopoietic Stem and Progenitor Cells. Current Protocols in Immunology, 2008, 80, Unit 22B.2.	3.6	37
110	Steel factor coordinately regulates the molecular signature and biologic function of hematopoietic stem cells. Blood, 2008, 112, 560-567.	1.4	55
111	Stem Cell Biomarkers in Chronic Myeloid Leukemia. Disease Markers, 2008, 24, 201-216.	1.3	14
112	Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5878-5882.	7.1	209
113	Long-Term Propagation of Distinct Hematopoietic Differentiation Programs In Vivo. Cell Stem Cell, 2007, 1, 218-229.	11.1	520
114	Steel factor responsiveness regulates the high self-renewal phenotype of fetal hematopoietic stem cells. Blood, 2007, 109, 5043-5048.	1.4	100
115	A Modified Polymerase Chain Reaction-Long Serial Analysis of Gene Expression Protocol Identifies Novel Transcripts in Human CD34+Bone Marrow Cells. Stem Cells, 2007, 25, 1681-1689.	3.2	8
116	Near-maximal expansions of hematopoietic stem cells in culture using NUP98-HOX fusions. Experimental Hematology, 2007, 35, 817-830.	0.4	54
117	Instability of BCR-ABL Gene in Primary and Cultured Chronic Myeloid Leukemia Stem Cells. Journal of the National Cancer Institute, 2007, 99, 680-693.	6.3	126
118	The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood, 2006, 107, 2311-2316.	1.4	199
119	Purification and unique properties of mammary epithelial stem cells. Nature, 2006, 439, 993-997.	27.8	1,404
120	High-resolution video monitoring of hematopoietic stem cells cultured in single-cell arrays identifies new features of self-renewal. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8185-8190.	7.1	110
121	Steroid Hormone Receptor Status of Mouse Mammary Stem Cells. Journal of the National Cancer Institute, 2006, 98, 1011-1014.	6.3	271
122	Deciphering the Mammary Epithelial Cell Hierarchy. Cell Cycle, 2006, 5, 1519-1522.	2.6	76
123	Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. Journal of Clinical Investigation, 2006, 116, 2808-2816.	8.2	315
124	Rapid and Irreversible Alteration of the Ability of Hematopoietic Stem Cells To Execute Both Symmetric and Asymmetric Self-Renewal Divisions by Exposure to Reduced Steel Factor Concentrations with No Effect on Their Survival or Mitogenesis Blood, 2006, 108, 684-684.	1.4	0
125	Enzymatic Dissociation and Culture of Normal Human Mammary Tissue to Detect Progenitor Activity. , 2005, 290, 249-264.		31
126	Efficient marking of human cells with rapid but transient repopulating activity in autografted recipients. Blood, 2005, 106, 893-898.	1.4	33

#	Article	IF	CITATIONS
127	Epithelial Progenitors in the Normal Human Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 49-59.	2.7	141
128	Genomic Instability of Human Mammary Epithelial Cells Overexpressing a Truncated Form of EMSY. Journal of the National Cancer Institute, 2005, 97, 1302-1306.	6.3	34
129	SDF-1 tells stem cells to mind their P's and Ζ's. Journal of Clinical Investigation, 2005, 115, 27-29.	8.2	9
130	Differential effects of granulocyte colony-stimulating factor on marrow- and blood-derived hematopoietic and immune cell populations in healthy human donors. Biology of Blood and Marrow Transplantation, 2004, 10, 624-634.	2.0	47
131	Deregulated expression in Ph+ human leukemias of AHI-1, a gene activated by insertional mutagenesis in mouse models of leukemia. Blood, 2004, 103, 3897-3904.	1.4	42
132	High-level Î ² -globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. Journal of Clinical Investigation, 2004, 114, 953-962.	8.2	100
133	High-level Î ² -globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. Journal of Clinical Investigation, 2004, 114, 953-962.	8.2	60
134	Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. Experimental Hematology, 2003, 31, 1338-1347.	0.4	105
135	Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood, 2002, 99, 792-799.	1.4	126
136	Common and distinct features of cytokine effects on hematopoietic stem and progenitor cells revealed by dose-response surface analysis. Biotechnology and Bioengineering, 2002, 80, 393-404.	3.3	86
137	Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Research and Treatment, 2001, 67, 93-109.	2.5	327
138	During ontogeny primitive (CD34+CD38â^') hematopoietic cells show altered expression of a subset of genes associated with early cytokine and differentiation responses of their adult counterparts. Blood, 2000, 96, 4160-4168.	1.4	59
139	Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G2/M transit and do not reenter G0. Blood, 2000, 96, 4185-4193.	1.4	226
140	Characterization of Normal Human Breast Epithelial Cell Subpopulations Isolated by Fluorescence-Activated Cell Sorting and Their Clonogenic Growth In Vitro. , 2000, , 177-193.		9
141	High marrow seeding efficiency of human lymphomyeloid repopulating cells in irradiated NOD/SCID mice. Blood, 2000, 96, 3979-3981.	1.4	1
142	Isolation of a Highly Quiescent Subpopulation of Primitive Leukemic Cells in Chronic Myeloid Leukemia. Blood, 1999, 94, 2056-2064.	1.4	487
143	Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation, 1998, 63, 201-213.	1.9	238
144	Evidence for differences in the mechanisms by which antibodies against CD44 promote adhesion of erythroid and granulopoietic progenitors to marrow stromal cells. British Journal of Haematology, 1998, 101, 436-445.	2.5	23

#	Article	IF	CITATIONS
145	Role of macrophage-colony-stimulating factor in regulating the accumulation and phenotype of tumor-associated macrophages. Cancer Immunology, Immunotherapy, 1997, 44, 165-172.	4.2	6
146	Highâ€resolution cell division tracking demonstrates the Flt3â€ligandâ€dependence of human marrow CD34 + CD38 â^' cell production in vitro. British Journal of Haematology, 1997, 98, 528-539.	2.5	91
147	Sustained proliferation, multi-lineage differentiation and maintenance of primitive human haemopoietic cells in NOD/SCID mice transplanted with human cord blood. British Journal of Haematology, 1997, 98, 1026-1036.	2.5	109
148	Quantitation and characterization of human megakaryocyte colonyâ€ f orming cells using a standardized serumâ€free agarose assay. British Journal of Haematology, 1997, 96, 790-800.	2.5	51
149	Diverse effects of anti D44 antibodies on the stromal cellâ€mediated support of normal but not leukaemic (CML) haemopoiesis in vitro. British Journal of Haematology, 1997, 97, 22-28.	2.5	38
150	Selective growth of freshly isolated human breast epithelial cells cultured at low concentrations in the presence or absence of bone marrow cells. Breast Cancer Research and Treatment, 1996, 41, 147-159.	2.5	16
151	Expansion of Hematopoietic Progenitor Cell Populations in Stirred Suspension Bioreactors of Normal Human Bone Marrow Cells. Nature Biotechnology, 1994, 12, 909-914.	17.5	102
152	Allografting in chronic myeloid leukemia with cultured marrow: Update of the vancouver study. Stem Cells, 1993, 11, 64-66.	3.2	5
153	Continuous activation of primitive hematopoietic cells in long-term human marrow cultures containing irradiated tumor cells. Journal of Cellular Physiology, 1991, 148, 370-379.	4.1	8
154	Cytogenetic studies of haemopoietic colonies from patients with an initial diagnosis of acute lymphoblastic leukaemia. British Journal of Haematology, 1988, 70, 5-11.	2.5	18
155	Nonclonal hemopoietic progenitors in a G6PD heterozygote with chronic myelogenous leukemia revealed after long-term marrow culture. American Journal of Hematology, 1987, 24, 389-394.	4.1	38
156	Two classes of primitive pluripotent hemopoietic progenitor cells: Separation by adherence. Journal of Cellular Physiology, 1985, 125, 127-134.	4.1	43
157	Anatomy and physiology of hematopoiesis. , 0, , 69-105.		4