List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4048557/publications.pdf Version: 2024-02-01

ΕΕΡΝΑΝΠΑ ΜΑΡΟΑÃ

#	Article	IF	CITATIONS
1	Applications of bioactive compounds extracted from olive industry wastes: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 453-476.	5.9	17
2	Inactivation mechanisms of human adenovirus by e-beam irradiation in water environments. Applied Microbiology and Biotechnology, 2022, , .	1.7	1
3	Phenolic Compounds from Irradiated Olive Wastes: Optimization of the Heat-Assisted Extraction Using Response Surface Methodology. Chemosensors, 2021, 9, 231.	1.8	12
4	Preservation treatment of fresh raspberries by e-beam irradiation. Innovative Food Science and Emerging Technologies, 2020, 66, 102487.	2.7	31
5	Effect of Ionizing Radiation and Refrigeration on the Antioxidants of Strawberries. Food and Bioprocess Technology, 2020, 13, 1516-1527.	2.6	17
6	lonizing Radiation Technologies to Increase the Extraction of Bioactive Compounds from Agro-Industrial Residues: A Review. Journal of Agricultural and Food Chemistry, 2020, 68, 11054-11067.	2.4	18
7	The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Science of the Total Environment, 2020, 727, 138706.	3.9	21
8	E-beam treatment to guarantee the safety and quality of cherry tomatoes. Innovative Food Science and Emerging Technologies, 2019, 55, 57-65.	2.7	24
9	Virucidal activity of gamma radiation on strawberries and raspberries. International Journal of Food Microbiology, 2019, 304, 89-96.	2.1	16
10	Degradation of phenolic acids by gamma radiation as model compounds of cork wastewaters. Chemical Engineering Journal, 2018, 341, 227-237.	6.6	25
11	Recovery of phenolic compounds from multi-component solution by a synthesized activated carbon using resorcinol and formaldehyde. Water Science and Technology, 2018, 77, 456-466.	1.2	5
12	Use of gamma radiation in sheep butter manufacturing process for shelf-life extension. International Dairy Journal, 2017, 71, 43-49.	1.5	3
13	Effects of gamma radiation on cork wastewater: Antioxidant activity and toxicity. Chemosphere, 2017, 169, 139-145.	4.2	19
14	Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation. Chemosphere, 2017, 187, 395-403.	4.2	13
15	Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innovative Food Science and Emerging Technologies, 2016, 36, 1-9.	2.7	44
16	A Biodegradation Bench Study of Cork Wastewater using Gamma Radiation. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	2
17	Tracking Human Adenovirus Inactivation by Gamma Radiation under Different Environmental Conditions. Applied and Environmental Microbiology, 2016, 82, 5166-5173.	1.4	8
18	Evaluating structural and microstructural changes of PDMS –SiO2 hybrid materials after sterilization by gamma irradiation. Materials Science and Engineering C, 2015, 48, 354-358.	3.8	14

#	Article	IF	CITATIONS
19	PDMS-SiO2 hybrid materials – A new insight into the role of Ti and Zr as additives. Polymer, 2015, 72, 40-51.	1.8	10
20	Nanostructure of PDMS–TEOS–PrZr hybrids prepared by direct deposition of gamma radiation energy. Applied Surface Science, 2015, 352, 91-94.	3.1	0
21	Influence of the polymer molecular weight on the microstructure of hybrid materials prepared by γ-irradiation. Radiation Physics and Chemistry, 2015, 106, 126-129.	1.4	8
22	Structural characterization of PDMS–TEOS–CaO–TiO2 hybrid materials obtained by sol–gel. Materials Chemistry and Physics, 2014, 143, 557-563.	2.0	20
23	A new approach to the preparation of PDMS–SiO2 based hybrids – A structural study. Materials Letters, 2014, 128, 105-109.	1.3	11
24	Study of PDMS conformation in PDMS-based hybrid materials prepared by gamma irradiation. Radiation Physics and Chemistry, 2012, 81, 1336-1340.	1.4	46
25	A novel hybrid material with calcium and strontium release capability. Materials Letters, 2012, 88, 12-15.	1.3	9
26	Thermal analysis and SANS characterisation of hybrid materials for biomedical applications. Journal of Thermal Analysis and Calorimetry, 2012, 109, 413-418.	2.0	2
27	The role of Zirconium as thermal stabilizer of PDMS–TEOS hybrids. Journal of Thermal Analysis and Calorimetry, 2010, 100, 557-561.	2.0	7
28	Thermal analysis of hybrid materials prepared by Î ³ -irradiation. Journal of Thermal Analysis and Calorimetry, 2009, 95, 99-103.	2.0	4
29	Elemental and RBS analysis of hybrid materials prepared by gamma-irradiation. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 288-294.	0.6	6
30	SANS investigation of PDMS hybrid materials prepared by gamma-irradiation. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 5166-5170.	0.6	7
31	Novel way to control PDMS cross-linking by gamma-irradiation. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1105-1108.	0.6	9
32	Hybrid PDMS–Silica–Zirconia materials prepared by γ-irradiation. Nuclear Instruments & Methods in Physics Research B, 2007, 265, 114-117.	0.6	12
33	Preparation of silica-based hybrid materials by gamma irradiation. Nuclear Instruments & Methods in Physics Research B, 2006, 248, 291-296.	0.6	14
34	MCNP simulation to optimise in-pile and shielding parts of the Portuguese SANS instrument. Radiation Protection Dosimetry, 2005, 116, 562-565.	0.4	1
35	Positron annihilation lifetime study of organic-inorganic hybrid materials prepared by irradiation. Journal of Non-Crystalline Solids, 2005, 351, 340-345.	1.5	4
36	Porosity Assessment of β-Spodumene/Glass Matrix Composites by Small Angle Neutron Scattering. Materials Science Forum, 2004, 455-456, 230-234.	0.3	0

#	Article	IF	CITATIONS
37	Guidelines for the implementation ofXYvariable-geometry converging multichannel collimation in a specific SANS facility. Journal of Applied Crystallography, 2004, 37, 210-215.	1.9	1
38	Investigation of Organic-Inorganic Hybrid Materials Prepared by Irradiation. Journal of Sol-Gel Science and Technology, 2003, 26, 349-352.	1.1	8
39	SANS Study of Zirconia-Silica and Titania-Silica Hybrid Materials. Journal of Sol-Gel Science and Technology, 2003, 26, 345-348.	1.1	10
40	Intensity and resolution effects in converging multichannel collimators for SANS by Monte Carlo simulation. Journal of Applied Crystallography, 2003, 36, 1262-1265.	1.9	2
41	A contribution to the practical implementation of a variable-geometry converging multichannel collimator for SANS. Journal of Applied Crystallography, 2003, 36, 1266-1269.	1.9	3
42	The use of multichannel collimation in small-angle neutron scattering: a computer-simulation study. Applied Physics A: Materials Science and Processing, 2002, 74, s1462-s1464.	1.1	2
43	Positronium study of porous structure of sol–gel prepared SiO2: influence of pH. Journal of Non-Crystalline Solids, 2001, 279, 196-203.	1.5	8
44	Multichannel collimation for SANS instruments. Physica B: Condensed Matter, 2000, 276-278, 189-191.	1.3	4
45	Structure of SiO2 gels prepared with different water contents. Physica B: Condensed Matter, 2000, 276-278, 388-389.	1.3	1
46	Design Optimisation of a High-Temperature X-Ray Diffractometer for In-Situ Determination of Lattice Mismatch and Residual Stress - the Hotbird. Materials Science Forum, 2000, 321-324, 168-173.	0.3	0
47	Positronium decay study of zirconia–silica sol–gels. Journal of Non-Crystalline Solids, 2000, 272, 209-217.	1.5	10
48	Small angle neutron scattering study of silica gels: influence of pH. Journal of Non-Crystalline Solids, 1999, 258, 70-77.	1.5	18
49	SANS of ZrO2·SiO2 gels. Journal of Non-Crystalline Solids, 1997, 209, 143-148.	1.5	18
50	Structure of mineral gels. Journal of Molecular Structure, 1996, 383, 271-276.	1.8	2
51	A study of free-volume hole distributions in by positron annihilation spectroscopy. Journal of Physics Condensed Matter, 1996, 8, 6313-6321.	0.7	11
52	SANS study of the aging of xTiO2-SiO2 gels. Journal of Sol-Gel Science and Technology, 1994, 2, 289-294.	1.1	4
53	A SANS study of xTiO2î—,SiO2 gels with low titania content. Journal of Non-Crystalline Solids, 1993, 163, 115-124.	1.5	11
54	A study of the conventional set-up for SANS measurements. Physica B: Condensed Matter, 1992, 180-181, 947-950.	1.3	0

#	Article	IF	CITATIONS
55	Optical effects on neutron guide tubes produced by collimation. Journal of Applied Crystallography, 1991, 24, 531-536.	1.9	1
56	Solving the problem of SANS instrument optimization. Journal of Applied Crystallography, 1991, 24, 994-998.	1.9	4
57	Optimization of a small angle neutron scattering spectrometer using a fixed collimation path. Physica B: Condensed Matter, 1989, 156-157, 608-610.	1.3	3
58	Design optimization of a small angle neutron scattering spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 274, 606-607.	0.7	3
59	Inelastic neutron scattering studies of collective modes in molten CsCl. Journal of Physics C: Solid State Physics, 1985, 18, 5235-5247.	1.5	14
60	Inelastic neutron scattering studies of the dynamics of molten alkali halides. Journal of Physics C: Solid State Physics, 1984, 17, 775-796.	1.5	35
61	Collective modes in molten alkaline-earth chlorides. II. Inelastic neutron scattering from molten SrCl2. Journal of Physics C: Solid State Physics, 1984, 17, 4725-4739.	1.5	15
62	Parity violation in the scattering of neutrons near a resonance. Journal of Physics G: Nuclear Physics, 1980, 6, 657-666.	0.8	5