Dace Gao

List of Publications by Citations

Source: https://exaly.com/author-pdf/4048221/dace-gao-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13 400 10 14 g-index

14 582 18.4 4.39 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
13	Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquid-Metal Particles. <i>Advanced Materials</i> , 2018 , 30, e1706157	24	150
12	A Deformable and Highly Robust Ethyl Cellulose Transparent Conductor with a Scalable Silver Nanowires Bundle Micromesh. <i>Advanced Materials</i> , 2018 , 30, e1802803	24	64
11	Recent Progress in Artificial Muscles for Interactive Soft Robotics. <i>Advanced Materials</i> , 2021 , 33, e2003	088	40
10	Emerging Soft Conductors for Bioelectronic Interfaces. <i>Advanced Functional Materials</i> , 2020 , 30, 19071	84 5.6	38
9	Breathable Nanogenerators for an On-Plant Self-Powered Sustainable Agriculture System. <i>ACS Nano</i> , 2021 , 15, 5307-5315	16.7	32
8	Printable elastomeric electrodes with sweat-enhanced conductivity for wearables. <i>Science Advances</i> , 2021 , 7,	14.3	17
7	Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers. <i>Nanoscale Horizons</i> , 2020 , 5, 730-738	10.8	15
6	Rectifying ionic current with ionoelastomers. <i>Science</i> , 2020 , 367, 735-736	33.3	12
5	Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. <i>Advanced Materials</i> , 2021 , e2105020	24	10
4	Reconfigurable and programmable origami dielectric elastomer actuators with 3D shape morphing and emissive architectures. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	10
3	Inkjet-Printed Iontronics for Transparent, Elastic, and Strain-Insensitive Touch Sensing Matrix. <i>Advanced Intelligent Systems</i> , 2020 , 2, 2000088	6	7
2	Ionic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators <i>Nature Communications</i> , 2022 , 13, 390	17.4	3
1	Artificial Muscles: Recent Progress in Artificial Muscles for Interactive Soft Robotics (Adv. Mater. 19/2021). <i>Advanced Materials</i> , 2021 , 33, 2170144	24	2