
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4048043/publications.pdf Version: 2024-02-01

MADKUS FENDT

#	Article	IF	CITATIONS
1	Orexin deficiency affects sensorimotor gating and its amphetamine-induced impairment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 116, 110517.	4.8	2
2	Intracerebroventricular infusion of the selective orexin 1 receptor antagonist SB-334867 impairs cognitive flexibility in a sex-dependent manner. Behavioural Brain Research, 2022, 424, 113791.	2.2	5
3	Anxiolytic-like Effects of the Positive GABAB Receptor Modulator GS39783 Correlate with Mice's Individual Basal Anxiety and Stress Reactivity. Pharmaceuticals, 2022, 15, 233.	3.8	3
4	Orexin deficiency affects sociability and the acquisition, expression, and extinction of conditioned social fear. Brain Research, 2021, 1751, 147199.	2.2	13
5	Orexin deficiency modulates cognitive flexibility in a sexâ€dependent manner. Genes, Brain and Behavior, 2021, 20, e12707.	2.2	19
6	Regulation of CREB Phosphorylation in Nucleus Accumbens after Relief Conditioning. Cells, 2021, 10, 238.	4.1	3
7	Unconditioned response to an aversive stimulus as predictor of response to conditioned fear and safety: A cross-species study. Behavioural Brain Research, 2021, 402, 113105.	2.2	10
8	Observational Fear Learning in Rats: Role of Trait Anxiety and Ultrasonic Vocalization. Brain Sciences, 2021, 11, 423.	2.3	7
9	Angiotensin II-induced drinking behavior as a method to verify cannula placement into the cerebral ventricles of mice: An evaluation of its accuracy. Physiology and Behavior, 2021, 232, 113339.	2.1	3
10	BDNF haploinsufficiency induces behavioral endophenotypes of schizophrenia in male mice that are rescued by enriched environment. Translational Psychiatry, 2021, 11, 233.	4.8	10
11	Intranasal oxytocin compensates for estrus cycle-specific reduction of conditioned safety memory in rats: Implications for psychiatric disorders. Neurobiology of Stress, 2021, 14, 100313.	4.0	4
12	Dissociative Effects of Neuropeptide S Receptor Deficiency and Nasal Neuropeptide S Administration on T-Maze Discrimination and Reversal Learning. Pharmaceuticals, 2021, 14, 643.	3.8	0
13	Learning safety to reduce fear: Recent insights and potential implications. Behavioural Brain Research, 2021, 411, 113402.	2.2	3
14	Let's get wild: A review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. Journal of Neuroscience Methods, 2021, 362, 109303.	2.5	8
15	Neuropeptide‣â€receptor deficiency affects sexâ€specific modulation of safety learning by preâ€exposure to electric stimuli. Genes, Brain and Behavior, 2020, 19, e12621.	2.2	14
16	Sex-dependent effects of Cacna1c haploinsufficiency on behavioral inhibition evoked by conspecific alarm signals in rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 99, 109849.	4.8	16
17	Sociability and extinction of conditioned social fear is affected in neuropeptide S receptor-deficient mice. Behavioural Brain Research, 2020, 393, 112782.	2.2	3
18	Langat virus infection affects hippocampal neuron morphology and function in mice without disease signs. Journal of Neuroinflammation, 2020, 17, 278.	7.2	14

#	Article	IF	CITATIONS
19	Infralimbic cortex activity is required for the expression but not the acquisition of conditioned safety. Psychopharmacology, 2020, 237, 2161-2172.	3.1	28
20	Individual expression of conditioned safety but not of conditioned relief is correlated with contextual fear. Behavioural Brain Research, 2020, 393, 112799.	2.2	4
21	Chronic inhibition of GABA synthesis in the infralimbic cortex facilitates conditioned safety memory and reduces contextual fear. Translational Psychiatry, 2020, 10, 120.	4.8	12
22	Corticosterone Treatment and Incubation Time After Contextual Fear Conditioning Synergistically Induce Fear Memory Generalization in Neuropeptide S Receptor-Deficient Mice. Frontiers in Neuroscience, 2020, 14, 128.	2.8	14
23	Context and trade-offs characterize real-world threat detection systems: A review and comprehensive framework to improve research practice and resolve the translational crisis. Neuroscience and Biobehavioral Reviews, 2020, 115, 25-33.	6.1	19
24	T36. Recall but Not Acquisition of Conditioned Safety Requires the Infralimbic Cortex in Rats. Biological Psychiatry, 2019, 85, S143.	1.3	0
25	Timing-dependent valence reversal: a principle of reinforcement processing and its possible implications. Current Opinion in Behavioral Sciences, 2019, 26, 114-120.	3.9	9
26	Deficiency of the immunoproteasome subunit β5i/LMP7 supports the anxiogenic effects of mild stress and facilitates cued fear memory in mice. Brain, Behavior, and Immunity, 2019, 80, 35-43.	4.1	6
27	Rhodiola rosea root extract has antipsychotic-like effects in rodent models of sensorimotor gating. Journal of Ethnopharmacology, 2019, 235, 320-328.	4.1	16
28	Memory generalization after one-trial contextual fear conditioning: Effects of sex and neuropeptide S receptor deficiency. Behavioural Brain Research, 2019, 361, 159-166.	2.2	17
29	The role of trait anxiety in associative learning during and after an aversive event. Learning and Memory, 2019, 26, 56-59.	1.3	10
30	Role of the mesolimbic dopamine system in relief learning. Neuropsychopharmacology, 2018, 43, 1651-1659.	5.4	26
31	Memory enhancement by ferulic acid ester across species. Science Advances, 2018, 4, eaat6994.	10.3	23
32	Associative Learning of Stimuli Paired and Unpaired With Reinforcement: Evaluating Evidence From Maggots, Flies, Bees, and Rats. Frontiers in Psychology, 2018, 9, 1494.	2.1	37
33	Predator odour but not TMT induces 22-kHz ultrasonic vocalizations in rats that lead to defensive behaviours in conspecifics upon replay. Scientific Reports, 2018, 8, 11041.	3.3	51
34	Predator odor induced defensive behavior in wild and laboratory rats: A comparative study. Physiology and Behavior, 2018, 194, 341-347.	2.1	9
35	Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease. Redox Biology, 2017, 12, 843-853.	9.0	62
36	Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens. Neuropharmacology, 2017, 114, 58-66.	4.1	13

#	Article	IF	CITATIONS
37	Intra-accumbal blockade of endocannabinoid CB1 receptors impairs learning but not retention of conditioned relief. Neurobiology of Learning and Memory, 2017, 144, 48-52.	1.9	3
38	Habenula and interpeduncular nucleus differentially modulate predator odor-induced innate fear behavior in rats. Behavioural Brain Research, 2017, 332, 164-171.	2.2	21
39	Increased anxiety but normal fear and safety learning in orexin-deficient mice. Behavioural Brain Research, 2017, 320, 210-218.	2.2	45
40	Editorial: Scents that Matter—from Olfactory Stimuli to Genes, Behaviors and Beyond. Frontiers in Neuroscience, 2016, 10, 29.	2.8	4
41	The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram. Behavioural Brain Research, 2016, 308, 205-210.	2.2	13
42	Relief memory consolidation requires protein synthesis within the nucleus accumbens. Neuropharmacology, 2016, 105, 10-14.	4.1	8
43	Predator odor exposure increases food-carrying behavior in rats. Physiology and Behavior, 2016, 154, 15-19.	2.1	6
44	Metabotropic Glutamate Receptors 7 within the Nucleus Accumbens are Involved in Relief Learning in Rats. Current Neuropharmacology, 2016, 14, 405-412.	2.9	11
45	Differential effects of wake promoting drug modafinil in aversive learning paradigms. Frontiers in Behavioral Neuroscience, 2015, 9, 220.	2.0	7
46	The olfactory hole-board test in rats: a new paradigm to study aversion and preferences to odors. Frontiers in Behavioral Neuroscience, 2015, 9, 223.	2.0	11
47	Temporary inactivation of the anterior part of the bed nucleus of the stria terminalis blocks alarm pheromone-induced defensive behavior in rats. Frontiers in Neuroscience, 2015, 9, 321.	2.8	22
48	Relief learning is dependent on <scp>NMDA</scp> receptor activation in the nucleus accumbens. British Journal of Pharmacology, 2015, 172, 2419-2426.	5.4	9
49	Standardized extract of Ficus platyphylla reverses apomorphine-induced changes in prepulse inhibition and locomotor activity in rats. Behavioural Brain Research, 2015, 293, 74-80.	2.2	3
50	Discovery of 1 H -pyrazolo[3,4- b]pyridines as potent dual orexin receptor antagonists (DORAs). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5555-5560.	2.2	14
51	Expression of freezing and fearâ€potentiated startle during sustained fear in mice. Genes, Brain and Behavior, 2015, 14, 281-291.	2.2	45
52	Fox urine exposure induces avoidance behavior in rats and activates the amygdalar olfactory cortex. Behavioural Brain Research, 2015, 279, 76-81.	2.2	20
53	Pain-relief learning in flies, rats, and man: basic research and applied perspectives. Learning and Memory, 2014, 21, 232-252.	1.3	113
54	Immediate and punitive impact of mechanosensory disturbance on olfactory behaviour of larval Drosophila. Biology Open, 2014, 3, 1005-1010.	1.2	6

#	Article	IF	CITATIONS
55	Ergolineâ€Derived Inverse Agonists of the Human H3 Receptor for the Treatment of Narcolepsy. ChemMedChem, 2014, 9, 1683-1696.	3.2	3
56	Blocking Metabotropic Glutamate Receptor Subtype 7 (mGlu7) via the Venus Flytrap Domain (VFTD) Inhibits Amygdala Plasticity, Stress, and Anxiety-related Behavior. Journal of Biological Chemistry, 2014, 289, 10975-10987.	3.4	63
57	Injections of the somatostatin receptor type 2 agonist L-054,264 into the amygdala block expression but not acquisition of conditioned fear in rats. Behavioural Brain Research, 2014, 265, 49-52.	2.2	7
58	Behavioral Analysis of Narcoleptic Episodes in Orexin-Deficient Mice. Behavior Genetics, 2014, 44, 136-143.	2.1	6
59	Relief learning is distinguished from safety learning by the requirement of the nucleus accumbens. Behavioural Brain Research, 2014, 272, 40-45.	2.2	33
60	Translational value of startle modulations. Cell and Tissue Research, 2013, 354, 287-295.	2.9	63
61	Differential roles of mGlu7 and mGlu8 in amygdala-dependent behavior and physiology. Neuropharmacology, 2013, 72, 215-223.	4.1	33
62	Identification of a Novel Series of Orexin Receptor Antagonists with a Distinct Effect on Sleep Architecture for the Treatment of Insomnia. Journal of Medicinal Chemistry, 2013, 56, 7590-7607.	6.4	82
63	Synchronous Evolution of an Odor Biosynthesis Pathway and Behavioral Response. Current Biology, 2013, 23, 11-20.	3.9	160
64	Kinetic properties of "dual―orexin receptor antagonists at OX1R and OX2R orexin receptors. Frontiers in Neuroscience, 2013, 7, 230.	2.8	28
65	Distinct effects of IPSU and suvorexant on mouse sleep architecture. Frontiers in Neuroscience, 2013, 7, 235.	2.8	33
66	Onset and offset of aversive events establish distinct memories requiring fear and reward networks. Learning and Memory, 2012, 19, 518-526.	1.3	61
67	The Dual Orexin Receptor Antagonist Almorexant Induces Sleep and Decreases Orexin-Induced Locomotion by Blocking Orexin 2 Receptors. Sleep, 2012, 35, 1625-1635.	1.1	85
68	Pharmacological interference with metabotropic glutamate receptor subtype 7 but not subtype 5 differentially affects within- and between-session extinction of Pavlovian conditioned fear. Neuropharmacology, 2012, 62, 1619-1626.	4.1	35
69	The effects of muscimol and AMN082 injections into the medial prefrontal cortex on the expression and extinction of conditioned fear in mice. Journal of Experimental Biology, 2012, 215, 1394-1398.	1.7	17
70	Gastrin-Releasing Peptide Signaling Plays a Limited and Subtle Role in Amygdala Physiology and Aversive Memory. PLoS ONE, 2012, 7, e34963.	2.5	18
71	The Hypoxic Rat Model for Obstetric Complications in Schizophrenia. Neuromethods, 2011, , 93-111.	0.3	0
72	Neuropeptide S receptor deficiency modulates spontaneous locomotor activity and the acoustic startle response. Behavioural Brain Research, 2011, 217, 1-9.	2.2	41

#	Article	IF	CITATIONS
73	Narcoleptic episodes in orexin-deficient mice are increased by both attractive and aversive odors. Behavioural Brain Research, 2011, 222, 397-400.	2.2	18
74	Olfactory neuron-specific expression of A30P alpha-synuclein exacerbates dopamine deficiency and hyperactivity in a novel conditional model of early Parkinson's disease stages. Neurobiology of Disease, 2011, 44, 192-204.	4.4	28
75	Behavioural fear and heart rate responses of horses after exposure to novel objects: Effects of habituation. Applied Animal Behaviour Science, 2011, 131, 104-109.	1.9	79
76	Benzimidazoles as Potent and Orally Active mGlu5 Receptor Antagonists with an Improved PK Profile. ACS Medicinal Chemistry Letters, 2011, 2, 58-62.	2.8	10
77	Detection and avoidance of a carnivore odor by prey. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11235-11240.	7.1	295
78	Differential expression of presynaptic genes in a rat model of postnatal hypoxia: relevance to schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 2010, 260, 81-89.	3.2	23
79	Piperidyl amides as novel, potent and orally active mGlu5 receptor antagonists with anxiolytic-like activity. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 184-188.	2.2	29
80	The effect of mGlu ₈ deficiency in animal models of psychiatric diseases. Genes, Brain and Behavior, 2010, 9, 33-44.	2.2	48
81	Group III Metabotropic Glutamate Receptors Inhibit Startle-Mediating Giant Neurons in the Caudal Pontine Reticular Nucleus But Do Not Mediate Synaptic Depression/Short-Term Habituation of Startle. Journal of Neuroscience, 2010, 30, 10422-10430.	3.6	22
82	Intra-amygdala injections of neuropeptide S block fear-potentiated startle. Neuroscience Letters, 2010, 474, 154-157.	2.1	43
83	Aversion- <i>vs</i> fear-inducing properties of 2,4,5-trimethyl-3-thiazoline, a component of fox odor, in comparison with those of butyric acid. Journal of Experimental Biology, 2009, 212, 2324-2327.	1.7	57
84	Innate or learned acoustic recognition of avian predators in rodents?. Journal of Experimental Biology, 2009, 212, 506-513.	1.7	21
85	Fear-reducing effects of intra-amygdala neuropeptide Y infusion in animal models of conditioned fear: an NPY Y1 receptor independent effect. Psychopharmacology, 2009, 206, 291-301.	3.1	53
86	5,7-Dihydroxytryptamine injections into the prefrontal cortex and nucleus accumbens differently affect prepulse inhibition and baseline startle magnitude in rats. Behavioural Brain Research, 2009, 202, 58-63.	2.2	7
87	2,3,5-Trimethyl-3-thiazoline (TMT), a component of fox odor – Just repugnant or really fear-inducing?. Neuroscience and Biobehavioral Reviews, 2008, 32, 1259-1266.	6.1	97
88	mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Molecular Psychiatry, 2008, 13, 970-979.	7.9	116
89	Behavioural Alterations in Rats Following Neonatal Hypoxia and Effects of Clozapine: Implications for Schizophrenia. Pharmacopsychiatry, 2008, 41, 138-145.	3.3	28
90	Inactivation of the lateral septum blocks fox odor-induced fear behavior. NeuroReport, 2008, 19, 667-670.	1.2	22

#	Article	IF	CITATIONS
91	Amygdaloid metabotropic glutamate receptor subtype 7 is involved in the acquisition of conditioned fear. NeuroReport, 2008, 19, 1147-1150.	1.2	36
92	Conditioned behavioral responses to a context paired with the predator odor trimethylthiazoline Behavioral Neuroscience, 2007, 121, 594-601.	1.2	41
93	Accumbal dopamine D2 receptors are important for sensorimotor gating in C3H mice. NeuroReport, 2007, 18, 1493-1497.	1.2	9
94	Are rats predisposed to learn 22kHz calls as danger-predicting signals?. Behavioural Brain Research, 2007, 185, 69-75.	2.2	73
95	Altered NMDA receptor expression and behavior following postnatal hypoxia: potential relevance to schizophrenia. Journal of Neural Transmission, 2007, 114, 239-248.	2.8	22
96	Temporary inactivation of the medial and basolateral amygdala differentially affects TMT-induced fear behavior in rats. Behavioural Brain Research, 2006, 167, 57-62.	2.2	102
97	Carbachol injections into the nucleus accumbens induce 50kHz calls in rats. Neuroscience Letters, 2006, 401, 10-15.	2.1	19
98	Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology, 2006, 50, 154-164.	4.1	35
99	Carbachol injections into the nucleus accumbens disrupt acquisition and expression of fear-potentiated startle and freezing in rats. Neuroscience, 2006, 140, 769-778.	2.3	14
100	Prefrontal dopamine D4 receptors are involved in encoding fear extinction. NeuroReport, 2006, 17, 847-850.	1.2	42
101	Exposure to Urine of Canids and Felids, but not of Herbivores, Induces Defensive Behavior in Laboratory Rats. Journal of Chemical Ecology, 2006, 32, 2617-2627.	1.8	89
102	Animal Models of Fear and Anxiety. , 2006, , 293-336.		4
103	"Lesions of the Dorsal Hippocampus Block Trace Fear Conditioned Potentiation of Startle": Correction Behavioral Neuroscience, 2005, 119, 960-960.	1.2	1
104	Lesions of the Dorsal Hippocampus Block Trace Fear Conditioned Potentiation of Startle Behavioral Neuroscience, 2005, 119, 834-838.	1.2	39
105	Behavioral Changes Induced in Rats by Exposure to Trimethylthiazoline, a Component of Fox Odor Behavioral Neuroscience, 2005, 119, 1004-1010.	1.2	76
106	TMT-induced autonomic and behavioral changes and the neural basis of its processing. Neuroscience and Biobehavioral Reviews, 2005, 29, 1145-1156.	6.1	141
107	Noradrenaline Transmission within the Ventral Bed Nucleus of the Stria Terminalis Is Critical for Fear Behavior Induced by Trimethylthiazoline, a Component of Fox Odor. Journal of Neuroscience, 2005, 25, 5998-6004.	3.6	101
108	Effects of clonidine injections into the bed nucleus of the stria terminalis on fear and anxiety behavior in rats. European Journal of Pharmacology, 2005, 507, 117-124.	3.5	48

#	Article	IF	CITATIONS
109	Amphetamine injections into the nucleus accumbens affect neither acquisition/expression of conditioned fear nor baseline startle response. Experimental Brain Research, 2005, 160, 538-544.	1.5	8
110	Clozapine attenuates the locomotor sensitisation and the prepulse inhibition deficit induced by a repeated oral administration of Catha edulis extract and cathinone in rats. Behavioural Brain Research, 2005, 160, 365-373.	2.2	21
111	Temporary inactivation of the rostral perirhinal cortex induces an anxiolytic-like effect on the elevated plus-maze and on the yohimbine-enhanced startle response. Behavioural Brain Research, 2005, 163, 168-173.	2.2	14
112	Detecting danger—or just another odorant? Olfactory sensitivity for the fox odor component 2,4,5-trimethylthiazoline in four species of mammals. Physiology and Behavior, 2005, 84, 211-215.	2.1	56
113	Temporary inactivation of the perirhinal cortex by muscimol injections block acquisition and expression of fear-potentiated startle. European Journal of Neuroscience, 2004, 19, 713-720.	2.6	20
114	Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Research, 2004, 1027, 87-93.	2.2	47
115	Temporary Inactivation of the Bed Nucleus of the Stria Terminalis But Not of the Amygdala Blocks Freezing Induced by Trimethylthiazoline, a Component of Fox Feces. Journal of Neuroscience, 2003, 23, 23-28.	3.6	285
116	Dopamine D1 receptors and adenosine A1 receptors in the rat nucleus accumbens regulate motor activity but not prepulse inhibition. European Journal of Pharmacology, 2002, 444, 161-169.	3.5	27
117	Clonidine injections into the lateral nucleus of the amygdala block acquisition and expression of fearâ€potentiated startle. European Journal of Neuroscience, 2002, 15, 151-157.	2.6	41
118	Metabotropic glutamate receptors are involved in amygdaloid plasticity. European Journal of Neuroscience, 2002, 15, 1535-1541.	2.6	78
119	The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology, 2001, 41, 1-7.	4.1	149
120	Injections of the NMDA Receptor Antagonist Aminophosphonopentanoic Acid into the Lateral Nucleus of the Amygdala Block the Expression of Fear-Potentiated Startle and Freezing. Journal of Neuroscience, 2001, 21, 4111-4115.	3.6	104
121	Anxiogenic-like effects of opiate withdrawal seen in the fear-potentiated startle test, an interdisciplinary probe for drug-related motivational states. Psychopharmacology, 2001, 155, 242-250.	3.1	30
122	Sensitization of prepulse inhibition deficits by repeated administration of dizocilpine. Psychopharmacology, 2001, 156, 177-181.	3.1	32
123	Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology, 2001, 156, 216-224.	3.1	342
124	Expression and conditioned inhibition of fear-potentiated startle after stimulation and blockade of AMPA/Kainate and GABAA receptors in the dorsal periaqueductal gray. Brain Research, 2000, 880, 1-10.	2.2	21
125	Amygdaloid N-methyl-d-aspartate and γ-aminobutyric acidA receptors regulate sensorimotor gating in a dopamine-dependent way in rats. Neuroscience, 2000, 98, 55-60.	2.3	57
126	Role of the substantia nigra pars reticulata in sensorimotor gating, measured by prepulse inhibition of startle in rats. Behavioural Brain Research, 2000, 117, 153-162.	2.2	65

#	Article	IF	CITATIONS
127	The superior olivary complex is necessary for the full expression of the acoustic but not tactile startle response in rats. Behavioural Brain Research, 2000, 108, 181-188.	2.2	18
128	The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 1999, 23, 743-760.	6.1	1,007
129	Enhancement of prepulse inhibition after blockade of GABA activity within the superior colliculus. Brain Research, 1999, 833, 81-85.	2.2	37
130	Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat. European Journal of Pharmacology, 1999, 370, 101-107.	3.5	63
131	Different regions of the periaqueductal grey are involved differently in the expression and conditioned inhibition of fear-potentiated startle. European Journal of Neuroscience, 1998, 10, 3876-3884.	2.6	35
132	Corticotropin-releasing Factor in the Caudal Pontine Reticular Nucleus Mediates the Expression of Fear-potentiated Startle in the Rat. European Journal of Neuroscience, 1997, 9, 299-305.	2.6	55
133	The acoustic startle response in inbred Roman high- and low-avoidance rats. Behavior Genetics, 1997, 27, 579-582.	2.1	46
134	Lesions of the central gray block conditioned fear as measured with the potentiated startle paradigm. Behavioural Brain Research, 1996, 74, 127-134.	2.2	63
135	NMDA receptors in the pontine brainstem are necessary for fear potentiation of the startle response. European Journal of Pharmacology, 1996, 318, 1-6.	3.5	25
136	Somatostatin in the Pontine Reticular Formation Modulates Fear Potentiation of the Acoustic Startle Response: An Anatomical, Electrophysiological, and Behavioral Study. Journal of Neuroscience, 1996, 16, 3097-3103.	3.6	29
137	Cholecystokinin enhances the acoustic startle response in rats. NeuroReport, 1995, 6, 2081-2084.	1.2	27
138	Amygdaloid noradrenaline is involved in the sensitization of the acoustic startle response in rats. Pharmacology Biochemistry and Behavior, 1994, 48, 307-314.	2.9	76
139	Lesions of the central gray block the sensitization of the acoustic startle response in rats. Brain Research, 1994, 661, 163-173.	2.2	80
140	Sensorimotor gating deficit after lesions of the superior colliculus. NeuroReport, 1994, 5, 1725-1728.	1.2	62