
Jeremy T Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4047957/publications.pdf Version: 2024-02-01

IEDEMY T SMITH

#	Article	IF	CITATIONS
1	A Role for Kisspeptins in the Regulation of Gonadotropin Secretion in the Mouse. Endocrinology, 2004, 145, 4073-4077.	2.8	1,016
2	Regulation of Kiss1 Gene Expression in the Brain of the Female Mouse. Endocrinology, 2005, 146, 3686-3692.	2.8	912
3	Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty. Journal of Neuroscience, 2005, 25, 11349-11356.	3.6	873
4	Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KiSS-1 mRNA in the Male Rat. Neuroendocrinology, 2004, 80, 264-272.	2.5	809
5	Kisspeptin Neurons in the Arcuate Nucleus of the Ewe Express Both Dynorphin A and Neurokinin B. Endocrinology, 2007, 148, 5752-5760.	2.8	581
6	Differential Regulation of KiSS-1 mRNA Expression by Sex Steroids in the Brain of the Male Mouse. Endocrinology, 2005, 146, 2976-2984.	2.8	579
7	Kiss1 Neurons in the Forebrain as Central Processors for Generating the Preovulatory Luteinizing Hormone Surge. Journal of Neuroscience, 2006, 26, 6687-6694.	3.6	519
8	KiSSâ€1 Neurones Are Direct Targets for Leptin in the <i>ob/ob</i> Mouse. Journal of Neuroendocrinology, 2006, 18, 298-303.	2.6	479
9	Variation in Kisspeptin and RFamide-Related Peptide (RFRP) Expression and Terminal Connections to Gonadotropin-Releasing Hormone Neurons in the Brain: A Novel Medium for Seasonal Breeding in the Sheep. Endocrinology, 2008, 149, 5770-5782.	2.8	335
10	KiSS-1 Messenger Ribonucleic Acid Expression in the Hypothalamus of the Ewe Is Regulated by Sex Steroids and Season. Endocrinology, 2007, 148, 1150-1157.	2.8	331
11	Discovery of Potent Kisspeptin Antagonists Delineate Physiological Mechanisms of Gonadotropin Regulation. Journal of Neuroscience, 2009, 29, 3920-3929.	3.6	322
12	Potent Action of RFamide-Related Peptide-3 on Pituitary Gonadotropes Indicative of a Hypophysiotropic Role in the Negative Regulation of Gonadotropin Secretion. Endocrinology, 2008, 149, 5811-5821.	2.8	301
13	Kisspeptin Synchronizes Preovulatory Surges in Cyclical Ewes and Causes Ovulation in Seasonally Acyclic Ewes. Endocrinology, 2007, 148, 5258-5267.	2.8	248
14	Kisspeptin Cells in the Ewe Brain Respond to Leptin and Communicate with Neuropeptide Y and Proopiomelanocortin Cells. Endocrinology, 2010, 151, 2233-2243.	2.8	243
15	Regulation of the neuroendocrine reproductive axis by kisspeptin-GPR54 signaling. Reproduction, 2006, 131, 623-630.	2.6	215
16	Kisspeptin Is Essential for the Full Preovulatory LH Surge and Stimulates GnRH Release from the Isolated Ovine Median Eminence. Endocrinology, 2011, 152, 1001-1012.	2.8	210
17	Effect of RF-Amide-Related Peptide-3 on Luteinizing Hormone and Follicle-Stimulating Hormone Synthesis and Secretion in Ovine Pituitary Gonadotropes. Endocrinology, 2009, 150, 5549-5556.	2.8	180
18	Kisspeptin Neurons in the Ovine Arcuate Nucleus and Preoptic Area Are Involved in the Preovulatory Luteinizing Hormone Surge. Endocrinology, 2009, 150, 5530-5538.	2.8	178

#	Article	IF	CITATIONS
19	Elevated KiSSâ€1 Expression in the Arcuate Nucleus Prior to the Cyclic Preovulatory Gonadotrophinâ€Releasing Hormone/Lutenising Hormone Surge in the Ewe Suggests a Stimulatory Role for Kisspeptin in Oestrogenâ€Positive Feedback. Journal of Neuroendocrinology, 2006, 18, 806-809.	2.6	175
20	Kisspeptin Is Present in Ovine Hypophysial Portal Blood But Does Not Increase during the Preovulatory Luteinizing Hormone Surge: Evidence that Gonadotropes Are Not Direct Targets of Kisspeptin in Vivo. Endocrinology, 2008, 149, 1951-1959.	2.8	161
21	Gonadotropin-Inhibitory Hormone Is a Hypothalamic Peptide That Provides a Molecular Switch between Reproduction and Feeding. Neuroendocrinology, 2012, 95, 305-316.	2.5	159
22	Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. Journal of Clinical Investigation, 2014, 124, 3075-3079.	8.2	152
23	Hypothalamic Expression of KISS1 and Gonadotropin Inhibitory Hormone Genes During the Menstrual Cycle of a Non-Human Primate1. Biology of Reproduction, 2010, 83, 568-577.	2.7	125
24	Increased Fetal Glucocorticoid Exposure Delays Puberty Onset in Postnatal Life. Endocrinology, 2000, 141, 2422-2428.	2.8	117
25	Kisspeptin signalling in the brain: Steroid regulation in the rodent and ewe. Brain Research Reviews, 2008, 57, 288-298.	9.0	114
26	The role of kisspeptin neurons in reproduction and metabolism. Journal of Endocrinology, 2018, 238, R173-R183.	2.6	105
27	Melanocortins May Stimulate Reproduction by Activating Orexin Neurons in the Dorsomedial Hypothalamus and Kisspeptin Neurons in the Preoptic Area of the Ewe. Endocrinology, 2009, 150, 5488-5497.	2.8	100
28	Sex steroid control of hypothalamic Kiss1 expression in sheep and rodents: Comparative aspects. Peptides, 2009, 30, 94-102.	2.4	96
29	Kisspeptin and energy balance in reproduction. Reproduction, 2014, 147, R53-R63.	2.6	96
30	Gonadotropin-Inhibitory Hormone (GnIH) Secretion into the Ovine Hypophyseal Portal System. Endocrinology, 2012, 153, 3368-3375.	2.8	94
31	Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behavioural Brain Research, 2015, 286, 192-200.	2.2	94
32	Leptin Distribution and Metabolism in the Pregnant Rat: Transplacental Leptin Passage Increases in Late Gestation but Is Reduced by Excess Glucocorticoids. Endocrinology, 2003, 144, 3024-3030.	2.8	91
33	Evidence that RF-amide related peptides are inhibitors of reproduction in mammals. Frontiers in Neuroendocrinology, 2009, 30, 371-378.	5.2	89
34	Plasma Leptin-Binding Activity and Hypothalamic Leptin Receptor Expression During Pregnancy and Lactation in the Rat1. Biology of Reproduction, 2002, 66, 1762-1767.	2.7	81
35	Leptin Receptor Expression in the Rat Placenta: Changes in Ob-Ra, Ob-Rb, and Ob-Re with Gestational Age and Suppression by Glucocorticoids1. Biology of Reproduction, 2002, 67, 1204-1210.	2.7	79
36	Haplosufficient Genomic Androgen Receptor Signaling Is Adequate to Protect Female Mice From Induction of Polycystic Ovary Syndrome Features by Prenatal Hyperandrogenization. Endocrinology, 2015, 156, 1441-1452.	2.8	77

#	Article	IF	CITATIONS
37	Sex Steroid Regulation of Kisspeptin Circuits. Advances in Experimental Medicine and Biology, 2013, 784, 275-295.	1.6	75
38	Kisspeptin and seasonality in sheep. Peptides, 2009, 30, 154-163.	2.4	74
39	Gonadotropin inhibitory hormone function in mammals. Trends in Endocrinology and Metabolism, 2010, 21, 255-260.	7.1	74
40	Kisspeptin expression in the brain: Catalyst for the initiation of puberty. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 1-9.	5.7	70
41	Developmental changes in plasma leptin and hypothalamic leptin receptor expression in the rat: peripubertal changes and the emergence of sex differences. Journal of Endocrinology, 2003, 176, 313-319.	2.6	66
42	Kisspeptin Signaling Is Required for the Luteinizing Hormone Response in Anestrous Ewes following the Introduction of Males. PLoS ONE, 2013, 8, e57972.	2.5	55
43	Kisspeptin Cells in the Ovine Arcuate Nucleus Express Prolactin Receptor but not Melatonin Receptor. Journal of Neuroendocrinology, 2011, 23, 871-882.	2.6	53
44	Evidence that Neurokinin B Controls Basal Gonadotropin-Releasing Hormone Secretion but Is Not Critical for Estrogen-Positive Feedback in Sheep. Neuroendocrinology, 2015, 101, 161-174.	2.5	47
45	Seasonal and Cyclical Change in the Luteinizing Hormone Response to Kisspeptin in the Ewe. Neuroendocrinology, 2009, 90, 283-291.	2.5	45
46	Preweaning Over- and Underfeeding Alters Onset of Puberty in the Rat Without Affecting Kisspeptin1. Biology of Reproduction, 2012, 86, 145, 1-8.	2.7	41
47	The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep. Domestic Animal Endocrinology, 2012, 43, 75-84.	1.6	40
48	Pregnancy-induced adaptations of the central circadian clock and maternal glucocorticoids. Journal of Endocrinology, 2016, 228, 135-147.	2.6	40
49	Neonatal overfeeding induces early decline of the ovarian reserve: Implications for the role of leptin. Molecular and Cellular Endocrinology, 2016, 431, 24-35.	3.2	39
50	Seasonal Variation in the Gonadotropin-Releasing Hormone Response to Kisspeptin in Sheep: Possible Kisspeptin Regulation of the Kisspeptin Receptor. Neuroendocrinology, 2012, 96, 212-221.	2.5	38
51	Characterizing the neuroendocrine and ovarian defects of androgen receptor-knockout female mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E717-E726.	3.5	38
52	The Role of Central Androgen Receptor Actions in Regulating the Hypothalamic-Pituitary-Ovarian Axis. Neuroendocrinology, 2018, 106, 389-400.	2.5	38
53	Placental and Fetal Growth Retardation Following Partial Progesterone Withdrawal in Rat Pregnancy. Placenta, 2006, 27, 208-214.	1.5	37
54	Vitamin D is crucial for maternal care and offspring social behaviour in rats. Journal of Endocrinology, 2018, 237, 73-85.	2.6	35

#	Article	IF	CITATIONS
55	Seasonal breeding as a neuroendocrine model for puberty in sheep. Molecular and Cellular Endocrinology, 2010, 324, 102-109.	3.2	33
56	Effects of Season and Estradiol on KNDy Neuron Peptides, Colocalization With D2 Dopamine Receptors, and Dopaminergic Inputs in the Ewe. Endocrinology, 2017, 158, 831-841.	2.8	27
57	Unaltered Hypothalamic Metabolic Gene Expression in <i>Kiss1r </i> <scp>Knockout</scp> Mice Despite Obesity and Reduced Energy Expenditure. Journal of Neuroendocrinology, 2016, 28, .	2.6	26
58	Kisspeptin Stimulates Growth Hormone Release by Utilizing Neuropeptide Y Pathways and Is Dependent on the Presence of Ghrelin in the Ewe. Endocrinology, 2017, 158, 3526-3539.	2.8	26
59	Conditional knockout of kisspeptin signaling in brown adipose tissue increases metabolic rate and body temperature and lowers body weight. FASEB Journal, 2020, 34, 107-121.	0.5	25
60	An eGFP-expressing subpopulation of growth hormone secretagogue receptor cells are distinct from kisspeptin, tyrosine hydroxylase, and RFamide-related peptide neurons in mice. Peptides, 2013, 47, 45-53.	2.4	24
61	Cre/lox generation of a novel whole-body Kiss1r KO mouse line recapitulates a hypogonadal, obese, and metabolically-impaired phenotype. Molecular and Cellular Endocrinology, 2019, 498, 110559.	3.2	23
62	Kiss1 and Kiss1r mRNA expression in the rat placenta: Changes with gestational age and regulation by glucocorticoids. Placenta, 2013, 34, 657-662.	1.5	21
63	Increased Fetal Glucocorticoid Exposure Delays Puberty Onset in Postnatal Life. Endocrinology, 2000, 141, 2422-2428.	2.8	21
64	Evidence that RF-Amide Related Peptide-3 is not a Mediator of the Inhibitory Effects of Psychosocial Stress on Gonadotrophin Secretion in Ovariectomised Ewes. Journal of Neuroendocrinology, 2011, 23, 208-215.	2.6	20
65	Developmental increases in plasma leptin binding activity and tissue Ob-Re mRNA expression in the rat. Journal of Endocrinology, 2005, 184, 535-541.	2.6	15
66	Expression of genes for Kisspeptin (<i>KISS1</i>), Neurokinin B (<i>TAC3</i>), Prodynorphin () Tj ETQq0 0 0 Physiological Reports, 2020, 8, e14399.	rgBT /Over 1.7	lock 10 Tf 50 11
67	Kiss1 and Kiss1 receptor expression in the rhesus monkey testis: a possible local regulator of testicular function. Open Life Sciences, 2013, 8, 968-974.	1.4	9
68	Kisspeptin Signaling in Reproductive Biology. Advances in Experimental Medicine and Biology, 2013, , .	1.6	9
69	Neuroendocrine Control of Reproduction. , 2012, , 197-235.		8
70	Diurnal regulation of hypothalamic kisspeptin is disrupted during mouse pregnancy. Journal of Endocrinology, 2016, 229, 307-318.	2.6	8
71	Novel actions of kisspeptin signaling outside of GnRH-mediated fertility: a potential role in energy balance. Domestic Animal Endocrinology, 2020, 73, 106467.	1.6	7
72	Arcuate nucleus kisspeptin response to increased nutrition in rams. Reproduction, Fertility and Development, 2019, 31, 1682.	0.4	5

#	Article	IF	CITATIONS
73	Thermoneutral conditions correct the obese phenotype in female, but not male, Kiss1r knockout mice. Journal of Thermal Biology, 2020, 90, 102592.	2.5	5
74	Leptin in Rodent Pregnancy. , 2003, , 221-237.		5
75	Patterns of preoptic–hypothalamic neuronal activation and LH secretion in female sheep following the introduction and withdrawal of novel males. Reproduction, Fertility and Development, 2019, 31, 1674.	0.4	3
76	Kisspeptin impacts on circadian and ultradian rhythms of core body temperature: Evidence in kisspeptin receptor knockout and kisspeptin knockdown mice. Molecular and Cellular Endocrinology, 2022, 542, 111530.	3.2	2
77	Estrogenic Pastures: A Source of Endocrine Disruption in Sheep Reproduction. Frontiers in Endocrinology, 2022, 13, 880861.	3.5	2
78	Ontogeny of clock and KiSS-1 metastasis-suppressor (Kiss1) gene expression in the prepubertal mouse hypothalamus. Reproduction, Fertility and Development, 2017, 29, 1971.	0.4	1
79	Seasonal Variation in GnRH Response to Kisspeptin in Sheep: Possible Kisspeptin Regulation of the Kisspeptin Receptor. , 2011, , P2-275-P2-275.		1
80	Reply to Letter to the Editor. Journal of Trauma and Acute Care Surgery, 2022, Publish Ahead of Print, .	2.1	0
81	The role of kisspeptin and gonadotropin inhibitory hormone (GnIH) in the seasonality of reproduction in sheep. , 0, , 159-170.		0