List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/404788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis and Rheumatism, 2004, 50, 650-659.	6.7	660
2	Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. Journal of Clinical Investigation, 2008, 118, 205-216.	3.9	450
3	The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Research, 2005, 7, 29.	2.0	351
4	Blocking of Interleukin-17 during Reactivation of Experimental Arthritis Prevents Joint Inflammation and Bone Erosion by Decreasing RANKL and Interleukin-1. American Journal of Pathology, 2005, 167, 141-149.	1.9	290
5	Inflammatory arthritis in caspase 1 gene–deficient mice: Contribution of proteinase 3 to caspase 1–independent production of bioactive interleukinâ€1β. Arthritis and Rheumatism, 2009, 60, 3651-3662.	6.7	274
6	Engagement of fatty acids with tollâ€like receptor 2 drives interleukinâ€1β production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal–induced gouty arthritis. Arthritis and Rheumatism, 2010, 62, 3237-3248.	6.7	259
7	Essential role of microRNAâ€155 in the pathogenesis of autoimmune arthritis in mice. Arthritis and Rheumatism, 2011, 63, 1281-1288.	6.7	240
8	Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Molecular Nutrition and Food Research, 2015, 59, 1701-1712.	1.5	205
9	Toll-Like Receptor 2 Pathway Drives Streptococcal Cell Wall-Induced Joint Inflammation: Critical Role of Myeloid Differentiation Factor 88. Journal of Immunology, 2003, 171, 6145-6153.	0.4	199
10	Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis and Rheumatism, 2005, 52, 3239-3247.	6.7	177
11	Commercial Cow Milk Contains Physically Stable Extracellular Vesicles Expressing Immunoregulatory TGF-β. PLoS ONE, 2015, 10, e0121123.	1.1	163
12	Periodontal Pathogens Directly Promote Autoimmune Experimental Arthritis by Inducing a TLR2- and IL-1–Driven Th17 Response. Journal of Immunology, 2014, 192, 4103-4111.	0.4	159
13	The anti-CD20 antibody rituximab reduces the Th17 cell response. Arthritis and Rheumatism, 2011, 63, 1507-1516.	6.7	154
14	12/15-Lipoxygenase Counteracts Inflammation and Tissue Damage in Arthritis. Journal of Immunology, 2009, 183, 3383-3389.	0.4	138
15	Novel therapeutic targets in rheumatoid arthritis. Trends in Pharmacological Sciences, 2015, 36, 189-195.	4.0	137
16	Chronic skin inflammation leads to bone loss by IL-17–mediated inhibition of Wnt signaling in osteoblasts. Science Translational Medicine, 2016, 8, 330ra37.	5.8	133
17	Tumor necrosis factor–interleukinâ€17 interplay induces S100A8, interleukinâ€1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthritis and Rheumatism, 2011, 63, 2329-2339.	6.7	119
18	Interleukin-17 Acts Independently of TNF-α under Arthritic Conditions. Journal of Immunology, 2006, 176, 6262-6269.	0.4	118

#	Article	IF	CITATIONS
19	Linkage of Periodontitis and Rheumatoid Arthritis: Current Evidence and Potential Biological Interactions. International Journal of Molecular Sciences, 2019, 20, 4541.	1.8	115
20	NLRP3 inflammasome inhibitor OLT1177 suppresses joint inflammation in murine models of acute arthritis. Arthritis Research and Therapy, 2018, 20, 169.	1.6	110
21	Inflammation-dependent secretion and splicing of IL-32Î ³ in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4962-4967.	3.3	108
22	Tumour necrosis factor alpha-driven IL-32 expression in rheumatoid arthritis synovial tissue amplifies an inflammatory cascade. Annals of the Rheumatic Diseases, 2011, 70, 660-667.	0.5	104
23	Potential new targets in arthritis therapy: interleukin (IL)-17 and its relation to tumour necrosis factor and IL-1 in experimental arthritis. Annals of the Rheumatic Diseases, 2006, 65, iii29-iii33.	0.5	100
24	Alteration of the intestinal microbiome characterizes preclinical inflammatory arthritis in mice and its modulation attenuates established arthritis. Scientific Reports, 2017, 7, 15613.	1.6	100
25	The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine, 2015, 74, 101-107.	1.4	96
26	Interleukinâ€1 drives pathogenic Th17 cells during spontaneous arthritis in interleukinâ€1 receptor antagonist–deficient mice. Arthritis and Rheumatism, 2008, 58, 3461-3470.	6.7	94
27	Deficiency of Nrf2 Accelerates the Effector Phase of Arthritis and Aggravates Joint Disease. Antioxidants and Redox Signaling, 2011, 15, 889-901.	2.5	93
28	Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis and Rheumatism, 2005, 52, 975-983.	6.7	89
29	Shift from tollâ€like receptor 2 (TLRâ€2) toward TLRâ€4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLRâ€4–mediated interleukinâ€17 production. Arthritis and Rheumatism, 2008, 58, 3753-3764.	6.7	88
30	Interleukin-18 Promotes Joint Inflammation and Induces Interleukin-1-Driven Cartilage Destruction. American Journal of Pathology, 2004, 165, 959-967.	1.9	87
31	Interleukin 32 (IL-32) Contains a Typical α-Helix Bundle Structure That Resembles Focal Adhesion Targeting Region of Focal Adhesion Kinase-1. Journal of Biological Chemistry, 2012, 287, 5733-5743.	1.6	84
32	Immuno-PET and Immuno-SPECT of Rheumatoid Arthritis with Radiolabeled Anti–Fibroblast Activation Protein Antibody Correlates with Severity of Arthritis. Journal of Nuclear Medicine, 2015, 56, 778-783.	2.8	84
33	Local activation of STAT-1 and STAT-3 in the inflamed synovium during zymosan-induced arthritis: Exacerbation of joint inflammation in STAT-1 gene-knockout mice. Arthritis and Rheumatism, 2004, 50, 2014-2023.	6.7	83
34	T cell dependence of chronic destructive murine arthritis induced by repeated local activation of tollâ€like receptor–driven pathways: Crucial role of both interleukinâ€1β and interleukinâ€17. Arthritis and Rheumatism, 2008, 58, 98-108.	6.7	81
35	GM-CSF as a therapeutic target in inflammatory diseases. Molecular Immunology, 2013, 56, 675-682.	1.0	79
36	Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology, 2016, 55, 2220-2229.	0.9	77

#	Article	IF	CITATIONS
37	Role of Interleukin 17 in Arthritis Chronicity through Survival of Synoviocytes via Regulation of Synoviolin Expression. PLoS ONE, 2010, 5, e13416.	1.1	76
38	Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis. Microbiome, 2017, 5, 63.	4.9	73
39	Toll-Like Receptor Mediated Modulation of T Cell Response by Commensal Intestinal Microbiota as a Trigger for Autoimmune Arthritis. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	68
40	TGF-β is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain?. Osteoarthritis and Cartilage, 2015, 23, 478-486.	0.6	66
41	Non-classical monocytes as mediators of tissue destruction in arthritis. Annals of the Rheumatic Diseases, 2018, 77, 1490-1497.	0.5	65
42	Alpha-1-anti-trypsin-Fc fusion protein ameliorates gouty arthritis by reducing release and extracellular processing of IL-1β and by the induction of endogenous IL-1Ra. Annals of the Rheumatic Diseases, 2016, 75, 1219-1227.	0.5	63
43	Increased expression of interleukin-22 by synovial Th17 cells during late stages of murine experimental arthritis is controlled by interleukin-1 and enhances bone degradation. Arthritis and Rheumatism, 2011, 63, 2939-2948.	6.7	60
44	Alarmin S100A9 Induces Proinflammatory and Catabolic Effects Predominantly in the M1 Macrophages of Human Osteoarthritic Synovium. Journal of Rheumatology, 2016, 43, 1874-1884.	1.0	58
45	Combined blockade of granulocyte-macrophage colony stimulating factor and interleukin 17 pathways potently suppresses chronic destructive arthritis in a tumour necrosis factor α-independent mouse model. Annals of the Rheumatic Diseases, 2009, 68, 721-728.	0.5	56
46	Induction of Canonical Wnt Signaling by Synovial Overexpression of Selected Wnts Leads to Protease Activity and Early Osteoarthritis-Like Cartilage Damage. American Journal of Pathology, 2015, 185, 1970-1980.	1.9	55
47	Disease-Regulated Gene Therapy with Anti-Inflammatory Interleukin-10 Under the Control of the CXCL10 Promoter for the Treatment of Rheumatoid Arthritis. Human Gene Therapy, 2016, 27, 244-254.	1.4	54
48	High LDL levels lead to increased synovial inflammation and accelerated ectopic bone formation during experimental osteoarthritis. Osteoarthritis and Cartilage, 2016, 24, 844-855.	0.6	53
49	Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis. Osteoarthritis and Cartilage, 2017, 25, 385-396.	0.6	52
50	â€~SMASH' recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. Annals of the Rheumatic Diseases, 2021, 80, 714-726.	0.5	51
51	Local Interleukin-1-Driven Joint Pathology Is Dependent on Toll-Like Receptor 4 Activation. American Journal of Pathology, 2009, 175, 2004-2013.	1.9	48
52	Transcriptional profiling distinguishes inner and outer annulus fibrosus from nucleus pulposus in the bovine intervertebral disc. European Spine Journal, 2017, 26, 2053-2062.	1.0	48
53	Complementary action of granulocyte macrophage colony-stimulating factor and interleukin-17A induces interleukin-23, receptor activator of nuclear factor-IPB ligand, and matrix metalloproteinases and drives bone and cartilage pathology in experimental arthritis: rationale for combination therapy in rheumatoid arthritis. Arthritis Research and Therapy, 2015, 17, 163.	1.6	46
54	MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. Journal of Autoimmunity, 2017, 82, 74-84.	3.0	43

#	Article	IF	CITATIONS
55	Anti ILâ€17A therapy inhibits bone loss in TNFâ€Î±â€mediated murine arthritis by modulation of the Tâ€cell balance. European Journal of Immunology, 2012, 42, 413-423.	1.6	42
56	Amplifying elements of arthritis and joint destruction. Annals of the Rheumatic Diseases, 2007, 66, iii45-iii48.	0.5	41
57	Monocytic cell differentiation from band-stage neutrophils under inflammatory conditions via MKK6 activation. Blood, 2014, 124, 2713-2724.	0.6	40
58	Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation. Journal of Nutritional Biochemistry, 2016, 30, 74-84.	1.9	40
59	Protective Role of the MER Tyrosine Kinase via Efferocytosis in Rheumatoid Arthritis Models. Frontiers in Immunology, 2018, 9, 742.	2.2	40
60	Monitoring Therapy Response of Experimental Arthritis with Radiolabeled Tracers Targeting Fibroblasts, Macrophages, or Integrin α _v β ₃ . Journal of Nuclear Medicine, 2016, 57, 467-472.	2.8	38
61	Translational Mini-Review Series on Th17 Cells: Are T helper 17 cells really pathogenic in autoimmunity?. Clinical and Experimental Immunology, 2010, 159, 131-136.	1.1	37
62	Secukinumab for rheumatology: development and its potential place in therapy. Drug Design, Development and Therapy, 2016, Volume 10, 2069-2080.	2.0	37
63	Microbiotaâ€Dependent Involvement of Th17 Cells in Murine Models of Inflammatory Arthritis. Arthritis and Rheumatology, 2018, 70, 1971-1983.	2.9	37
64	Targeting of fibroblast activation protein in rheumatoid arthritis patients: imaging and <i>ex vivo</i> photodynamic therapy. Rheumatology, 2022, 61, 2999-3009.	0.9	37
65	Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infection and Immunity, 2017, 85, .	1.0	36
66	The CO-releasing molecule CORM-3 protects against articular degradation in the K/BxN serum transfer arthritis model. European Journal of Pharmacology, 2010, 634, 184-191.	1.7	35
67	Synovial macrophages promote TGF-β signaling and protect against influx of S100A8/S100A9-producing cells after intra-articular injections of oxidized low-density lipoproteins. Osteoarthritis and Cartilage, 2017, 25, 118-127.	0.6	33
68	Liposomal Treatment of Experimental Arthritis Can Be Monitored Noninvasively with a Radiolabeled Anti–Fibroblast Activation Protein Antibody. Journal of Nuclear Medicine, 2017, 58, 151-155.	2.8	32
69	Disease-regulated local IL-10 gene therapy diminishes synovitis and cartilage proteoglycan depletion in experimental arthritis. Annals of the Rheumatic Diseases, 2015, 74, 2084-2091.	0.5	31
70	S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis. Arthritis Research and Therapy, 2017, 19, 217.	1.6	31
71	The In-Vivo Use of Superparamagnetic Iron Oxide Nanoparticles to Detect Inflammation Elicits a Cytokine Response but Does Not Aggravate Experimental Arthritis. PLoS ONE, 2015, 10, e0126687.	1.1	31
72	IL-32Â and Streptococcus pyogenes cell wall fragments synergise for IL-1-dependent destructive arthritis via upregulation of TLR-2 and NOD2. Annals of the Rheumatic Diseases, 2010, 69, 1866-1872.	0.5	30

#	Article	IF	CITATIONS
73	Brief Report: Induction of Matrix Metalloproteinase Expression by Synovial Wnt Signaling and Association With Disease Progression in Early Symptomatic Osteoarthritis. Arthritis and Rheumatology, 2017, 69, 1978-1983.	2.9	26
74	A three-dimensional model to study human synovial pathology. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 18-28.	0.9	26
75	T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3â€rich synovium lacks response to CTLAâ€4ig but is successfully treated by interleukinâ€17 neutralization. Arthritis and Rheumatism, 2012, 64, 1762-1770.	6.7	24
76	The Th17 Pathway as a Therapeutic Target in Rheumatoid Arthritis and Other Autoimmune and Inflammatory Disorders. BioDrugs, 2013, 27, 439-452.	2.2	24
77	Interleukinâ€21 Receptor Deficiency Increases the Initial Tollâ€like Receptor 2 Response but Protects Against Joint Pathology by Reducing Th1 and Th17 Cells During Streptococcal Cell Wall Arthritis. Arthritis and Rheumatology, 2014, 66, 886-895.	2.9	24
78	Phosphatase and tensin homolog (PTEN) in antigen-presenting cells controls Th17-mediated autoimmune arthritis. Arthritis Research and Therapy, 2015, 17, 230.	1.6	24
79	Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cellular and Molecular Life Sciences, 2017, 74, 2095-2106.	2.4	24
80	IL-1β Damages Fibrocartilage and Upregulates MMP-13 Expression in Fibrochondrocytes in the Condyle of the Temporomandibular Joint. International Journal of Molecular Sciences, 2019, 20, 2260.	1.8	24
81	Flood Control: How Milk-Derived Extracellular Vesicles Can Help to Improve the Intestinal Barrier Function and Break the Gut–Joint Axis in Rheumatoid Arthritis. Frontiers in Immunology, 2021, 12, 703277.	2.2	24
82	Monitoring the effects of dexamethasone treatment by MRI using in vivo iron oxide nanoparticle-labeled macrophages. Arthritis Research and Therapy, 2014, 16, R131.	1.6	23
83	A Dual Role of Upper Zone of Growth Plate and Cartilage Matrix–Associated Protein in Human and Mouse Osteoarthritic Cartilage: Inhibition of Aggrecanases and Promotion of Bone Turnover. Arthritis and Rheumatology, 2017, 69, 1233-1245.	2.9	23
84	Imaging fibroblast activation protein to monitor therapeutic effects of neutralizing interleukin-22 in collagen-induced arthritis. Rheumatology, 2018, 57, 737-747.	0.9	22
85	Targeted photodynamic therapy selectively kills activated fibroblasts in experimental arthritis. Rheumatology, 2020, 59, 3952-3960.	0.9	22
86	Inhibition of Inflammation and Bone Erosion by RNA Interference–Mediated Silencing of Heterogeneous Nuclear RNP A2/B1 in Two Experimental Models of Rheumatoid Arthritis. Arthritis and Rheumatology, 2015, 67, 2536-2546.	2.9	21
87	Suppression of the inflammatory response by disease-inducible interleukin-10 gene therapy in a three-dimensional micromass model of the human synovial membrane. Arthritis Research and Therapy, 2016, 18, 186.	1.6	21
88	Rheumatoid Arthritis Patients With Circulating Extracellular Vesicles Positive for IgM Rheumatoid Factor Have Higher Disease Activity. Frontiers in Immunology, 2018, 9, 2388.	2.2	21
89	Murine Borrelia arthritis is highly dependent on ASC and caspase-1, but independent of NLRP3. Arthritis Research and Therapy, 2012, 14, R247.	1.6	20
90	Destructive role of myeloid differentiation factor 88 and protective role of TRIF in interleukinâ€17–dependent arthritis in mice. Arthritis and Rheumatism, 2012, 64, 1838-1847.	6.7	20

#	Article	IF	CITATIONS
91	S100A8/A9, a potent serum and molecular imaging biomarker for synovial inflammation and joint destruction in seronegative experimental arthritis. Arthritis Research and Therapy, 2016, 18, 247.	1.6	20
92	Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium. PLoS ONE, 2016, 11, e0167076.	1.1	20
93	Higher efficacy of anti-IL-6/IL-21 combination therapy compared to monotherapy in the induction phase of Th17-driven experimental arthritis. PLoS ONE, 2017, 12, e0171757.	1.1	20
94	Different amplifying mechanisms of interleukinâ€17 and interferonâ€Î³ in Fcl³ receptor–mediated cartilage destruction in murine immune complex–mediated arthritis. Arthritis and Rheumatism, 2009, 60, 396-407.	6.7	17
95	In Vivo Molecular Imaging of Cathepsin and Matrix Metalloproteinase Activity Discriminates between Arthritic and Osteoarthritic Processes in Mice. Molecular Imaging, 2014, 13, 7290.2014.00001.	0.7	17
96	The involvement of Tollâ€like receptor 9 in the pathogenesis of erosive autoimmune arthritis. Journal of Cellular and Molecular Medicine, 2018, 22, 4399-4409.	1.6	17
97	The level of synovial AXL expression determines the outcome of inflammatory arthritis, possibly depending on the upstream role of TGF-l²1. Rheumatology, 2019, 58, 536-546.	0.9	17
98	Toll-like receptor 2 controls acute immune complex-driven arthritis by regulating the inhibitory Fcγ receptor IIB. Arthritis and Rheumatism, 2013, 65, n/a-n/a.	6.7	16
99	IL-1β-Mediated Activation of Adipose-Derived Mesenchymal Stromal Cells Results in PMN Reallocation and Enhanced Phagocytosis: A Possible Mechanism for the Reduction of Osteoarthritis Pathology. Frontiers in Immunology, 2019, 10, 1075.	2.2	16
100	Exposure to Candida albicans Polarizes a T-Cell Driven Arthritis Model towards Th17 Responses, Resulting in a More Destructive Arthritis. PLoS ONE, 2012, 7, e38889.	1.1	15
101	Genetic modification of ER-Hoxb8 osteoclast precursors using CRISPR/Cas9 as a novel way to allow studies on osteoclast biology. Journal of Leukocyte Biology, 2017, 101, 957-966.	1.5	14
102	Interleukin 1 β-induced SMAD2/3 linker modifications are TAK1 dependent and delay TGFβ signaling in primary human mesenchymal stem cells. Cellular Signalling, 2017, 40, 190-199.	1.7	14
103	The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis. Osteoarthritis and Cartilage, 2018, 26, 1722-1732.	0.6	14
104	Tyro3/Axl/Mertk-deficient mice develop bone marrow edema which is an early pathological marker in rheumatoid arthritis. PLoS ONE, 2018, 13, e0205902.	1.1	13
105	Fcl ³ receptor-mediated influx of S100A8/A9-producing neutrophils as inducer of bone erosion during antigen-induced arthritis. Arthritis Research and Therapy, 2018, 20, 80.	1.6	13
106	Systemic Resolvin E1 (RvE1) Treatment Does Not Ameliorate the Severity of Collagen-Induced Arthritis (CIA) in Mice: A Randomized, Prospective, and Controlled Proof of Concept Study. Mediators of Inflammation, 2019, 2019, 1-14.	1.4	12
107	Osteoarthritis-Related Inflammation Blocks TGF-β's Protective Effect on Chondrocyte Hypertrophy via (de)Phosphorylation of the SMAD2/3 Linker Region. International Journal of Molecular Sciences, 2021, 22, 8124.	1.8	12
108	Local inhibition of TGF-β1 signaling improves Th17/Treg balance but not joint pathology during experimental arthritis. Scientific Reports, 2022, 12, 3182.	1.6	10

#	Article	IF	CITATIONS
109	Supplementation of diet with non-digestible oligosaccharides alters the intestinal microbiota, but not arthritis development, in IL-1 receptor antagonist deficient mice. PLoS ONE, 2019, 14, e0219366.	1.1	9
110	Fibroblast Activation Protein Targeted Photodynamic Therapy Selectively Kills Activated Skin Fibroblasts from Systemic Sclerosis Patients and Prevents Tissue Contraction. International Journal of Molecular Sciences, 2021, 22, 12681.	1.8	9
111	Identification of Transcription Factors Responsible for a Transforming Growth Factor-β-Driven Hypertrophy-like Phenotype in Human Osteoarthritic Chondrocytes. Cells, 2022, 11, 1232.	1.8	9
112	An optimized method for plasma extracellular vesicles isolation to exclude the copresence of biological drugs and plasma proteins which impairs their biological characterization. PLoS ONE, 2020, 15, e0236508.	1.1	8
113	Up-Regulation of the Inflammatory Response by Ovariectomy in Collagen-Induced Arthritis. Effects of Tin Protoporphyrin IX. Inflammation, 2011, 34, 585-596.	1.7	7
114	IL37 dampens the IL1β-induced catabolic status of human OA chondrocytes. Rheumatology, 2016, 56, kew411.	0.9	7
115	The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis. Arthritis Research and Therapy, 2020, 22, 199.	1.6	7
116	Treatment of collagenase-induced osteoarthritis with a viral vector encoding TSG-6 results in ectopic bone formation. PeerJ, 2018, 6, e4771.	0.9	7
117	Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants, 2021, 10, 1660.	2.2	7
118	Selective Increment of Synovial Soluble TYRO3 Correlates with Disease Severity and Joint Inflammation in Patients with Rheumatoid Arthritis. Journal of Immunology Research, 2020, 2020, 1-10.	0.9	6
119	The citrullinated/native index of autoantibodies against hnRNP-DL predicts an individual "window of treatment success―in RA patients. Arthritis Research and Therapy, 2021, 23, 239.	1.6	6
120	Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development. Pharmaceutics, 2021, 13, 1868.	2.0	5
121	Reply. Arthritis and Rheumatism, 2013, 65, 3314-3316.	6.7	4
122	Glucose Kinetics in the Collagen-Induced Arthritis Model: An All-in-One Model to Assess Both Efficacy and Metabolic Side Effects of Glucocorticoids. PLoS ONE, 2014, 9, e98684.	1.1	4
123	Systemic overexpression of interleukin-22 induces the negative immune-regulator SOCS3 and potently reduces experimental arthritis in mice. Rheumatology, 2021, 60, 1974-1983.	0.9	3
124	S100A8/A9 is not essential for the development of inflammation and joint pathology in interleukin-1 receptor antagonist knockout mice. Arthritis Research and Therapy, 2021, 23, 216.	1.6	3
125	PTEN in antigen presenting cells is a master regulator for Th17-mediated autoimmune pathology. Arthritis Research and Therapy, 2012, 14, .	1.6	1
126	A8.29â€Commensal intestinal microbiota drives spontaneous interleukin-1- and T helper 17-mediated arthritis in mice. Annals of the Rheumatic Diseases, 2014, 73, A87.2-A88.	0.5	1

#	Article	IF	CITATIONS
127	High LDL-C levels attenuate onset of inflammation and cartilage destruction in antigen-induced arthritis. Clinical and Experimental Rheumatology, 2019, 37, 983-993.	0.4	1
128	Title is missing!. Arthritis Research, 2003, 5, 41.	2.0	0
129	Title is missing!. Arthritis Research, 2005, 7, P66.	2.0	0
130	Title is missing!. Arthritis Research, 2005, 7, P53.	2.0	0
131	Anti-interleukin 17A therapy inhibits tumour necrosis factor-mediated bone loss by modulation of T cell balance. Annals of the Rheumatic Diseases, 2010, 69, A18-A19.	0.5	Ο
132	IL-32Â and streptococcus pyogenes cell wall fragments synergise for IL-1-dependent destructive arthritis via upregulation of TLR-2 and NOD2. Annals of the Rheumatic Diseases, 2010, 69, A47-A48.	0.5	0
133	IL-21R deficiency during experimental arthritis increases local expression of inflammatory mediators but protects against joint pathology by suppressing Th17 cells. Annals of the Rheumatic Diseases, 2010, 69, A73-A74.	0.5	0
134	Increased IL-22 expression by synovial Th17 cells during late stages of arthritis is controlled by IL-1 and enhances bone degradation. Annals of the Rheumatic Diseases, 2011, 70, A51-A52.	0.5	0
135	Toll-like receptor 2 negatively regulates Fc receptor response in macrophages and inhibits FcÂR-mediated arthritis. Annals of the Rheumatic Diseases, 2011, 70, A36-A36.	0.5	0
136	Dual role of IL-21 in experimental arthritis via SOCS regulation and Th17 differentiation. Annals of the Rheumatic Diseases, 2011, 70, A52-A52.	0.5	0
137	T cell lessons from the RA synovium SCID mouse model: synovial tissue rich in CD3 T cells lacks response to CTLA4-Ig, but is successfully treated with anti-IL-17 antibodies. Annals of the Rheumatic Diseases, 2011, 70, A73-A74.	0.5	0
138	Micro-RNA 155 controls the pathogenesis of autoimmune arthritis. Annals of the Rheumatic Diseases, 2011, 70, A79-A80.	0.5	0
139	NIR-fluorescence imaging points at a role for matrix-metalloproteinases in causing irreversible cartilage damage during collagen-induced arthritis. Annals of the Rheumatic Diseases, 2012, 71, A61.3-A62.	0.5	0
140	Increased innate immune responses by interleukin-22 contributes to the inflammatory process in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2012, 71, A11.2-A12.	0.5	0
141	Periodontal pathogens amplify arthritic bone erosion by reducing the TH2 response and promoting a toll-like receptor 2-dependent TH17 phenotype. Annals of the Rheumatic Diseases, 2012, 71, A28.1-A28.	0.5	0
142	IL-21 induces socs-mediated suppression of TLR triggering but aggravates TH17-driven destructive arthritis. Annals of the Rheumatic Diseases, 2012, 71, A78.1-A78.	0.5	0
143	A2.11â€Involvement of the Nucleic Acid Recognising Toll-Like Receptors TLR7 and TLR9 in the Pathogenesis of Erosive Arthritis. Annals of the Rheumatic Diseases, 2013, 72, A8.1-A8.	0.5	0
144	A3.5â€Combination Blocking of IL-6 and IL-21 in Experimental Arthritis Inhibits their Redundant Role in Th17-Driven Joint Pathology. Annals of the Rheumatic Diseases, 2013, 72, A15.1-A15.	0.5	0

#	Article	IF	CITATIONS
145	1.56â€Synergism between GM-CSF and IL-17 causes enhanced joint pathology via the production of IL-6 and IL-23. Annals of the Rheumatic Diseases, 2014, 73, A24.1-A24.	0.5	0
146	A1.81â€Mincle is not essential in T-cell independent arthritis models. Annals of the Rheumatic Diseases, 2014, 73, A35.3-A36.	0.5	0
147	4.8â€Role of Toll-like receptor 9 in the pathogenesis of inflammatory autoimmune arthritis and osteoclast activation. Annals of the Rheumatic Diseases, 2014, 73, A59.2-A60.	0.5	Ο
148	A1.22â€IL-22 Drives the initiation and augmentation of TH17-dependent experimental arthritis. Annals of the Rheumatic Diseases, 2014, 73, A9.2-A9.	0.5	0
149	07.04â€Partial elimination of intestinal microbiota dampens t helper 17 cell differentiation and established collagen-induced arthritis in mice. , 2017, , .		0
150	04.18â€Bmp2-induced osteophyte formation is facilitated by tgfβ but not by inflammatory factors. , 2017, , .		0
151	03.05â€The tam receptors axl and mer play a protective role in a temporal and spatial manner in inflammatory arthritis. , 2017, , .		0
152	08.27â€Impact of toll-like receptor 9 in inflammatory arthritis and osteoclastogenesis. , 2017, , .		0
153	03.06â€Mer-mediated efferocytosis tempers arthritis by preventing neutrophil littering in the joint. , 2017, , .		0
154	AB1349â€PATIENT INVOLVEMENT IN BASIC RHEUMATOLOGY RESEARCH IS CHALLENGING BUT FEASIBLE. A 3 YEAR'S RESPONSIVE EVALUATION OF ADDED VALUE, PITFALLS AND CONDITIONS FOR SUCCESS. , 2019, , .		0
155	FRI0527â€HIGH LDL LEVELS LESSEN BONE DESTRUCTION DURING ANTIGEN-INDUCED ARTHRITIS BY INHIBITIN OSTEOCLAST FORMATION AND FUNCTION. , 2019, , .	G	0
156	Critical role of IL-17 in experimental arthritis. , 2009, , 83-94.		0
157	Critical Role of IL-17 in Experimental Arthritis. , 2013, , 131-141.		О