
Tobias K D Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4046812/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unsaturated hydraulic properties of <i>Sphagnum</i> moss and peat reveal trimodal poreâ€size distributions. Water Resources Research, 2017, 53, 415-434.	4.2	45
2	Review: The influence of global change on Europe's water cycle and groundwater recharge. Hydrogeology Journal, 2020, 28, 1939-1959.	2.1	42
3	A Modular Framework for Modeling Unsaturated Soil Hydraulic Properties Over the Full Moisture Range. Water Resources Research, 2019, 55, 4994-5011.	4.2	32
4	The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environmental Modelling and Software, 2021, 145, 105206.	4.5	31
5	How well do crop modeling groups predict wheat phenology, given calibration data from the target population?. European Journal of Agronomy, 2021, 124, 126195.	4.1	27
6	Saturated and unsaturated salt transport in peat from aÂconstructed fen. Soil, 2018, 4, 63-81.	4.9	25
7	Evaluating multi-year, multi-site data on the energy balance closure of eddy-covariance flux measurements at cropland sites in southwestern Germany. Biogeosciences, 2019, 16, 521-540.	3.3	25
8	Competitive transport processes of chloride, sodium, potassium, and ammonium in fen peat. Journal of Contaminant Hydrology, 2018, 217, 17-31.	3.3	23
9	Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2). Geoscientific Model Development, 2021, 14, 151-175.	3.6	23
10	A pore-size classification for peat bogs derived from unsaturated hydraulic properties. Hydrology and Earth System Sciences, 2017, 21, 6185-6200.	4.9	22
11	Pedotransfer Function for the Brunswick Soil Hydraulic Property Model and Comparison to the van Genuchtenâ€Mualem Model. Water Resources Research, 2020, 56, e2019WR026820.	4.2	18
12	Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. PLoS ONE, 2022, 17, e0262951.	2.5	18
13	Crop growth and soil water fluxes at erosionâ€affected arable sites: Using weighing lysimeter data for model intercomparison. Vadose Zone Journal, 2020, 19, e20058.	2.2	17
14	Multi-model evaluation of phenology prediction for wheat in Australia. Agricultural and Forest Meteorology, 2021, 298-299, 108289.	4.8	17
15	The Role of Pore Structure on Nitrate Reduction in Peat Soil: A Physical Characterization of Pore Distribution and Solute Transport. Wetlands, 2017, 37, 951-960.	1.5	15
16	Modified Technique for Measuring Unsaturated Hydraulic Conductivity in <i>Sphagnum Moss</i> and Peat. Soil Science Society of America Journal, 2017, 81, 747-757.	2.2	15
17	Introduction of a guideline for measurements of greenhouse gas fluxes from soils using nonâ€steadyâ€state chambers. Journal of Plant Nutrition and Soil Science, 2022, 185, 447-461.	1.9	13
18	The geochemical signature of rare-metal pegmatites in the Central Africa Region: Soils, plants, water and stream sediments in the Gatumba tin–tantalum mining district, Rwanda. Journal of Geochemical Exploration, 2014, 144, 539-551.	3.2	11

TOBIAS K D WEBER

#	Article	IF	CITATIONS
19	Analytical expressions for noncapillary soil water retention based on popular capillary retention models. Vadose Zone Journal, 2020, 19, e20042.	2.2	9
20	Multi-site, multi-crop measurements in the soil–vegetation–atmosphere continuum: a comprehensive dataset from two climatically contrasting regions in southwestern Germany for the period 2009–2018. Earth System Science Data, 2022, 14, 1153-1181.	9.9	8
21	Combining Crop Modeling with Remote Sensing Data Using a Particle Filtering Technique to Produce Real-Time Forecasts of Winter Wheat Yields under Uncertain Boundary Conditions. Remote Sensing, 2022, 14, 1360.	4.0	7
22	The Chemical Potential of Water in Soils and Sediments. Soil Science Society of America Journal, 2016, 80, 79-83.	2.2	5
23	Robust Inverse Modeling of Growing Season Net Ecosystem Exchange in a Mountainous Peatland: Influence of Distributional Assumptions on Estimated Parameters and Total Carbon Fluxes. Journal of Advances in Modeling Earth Systems, 2018, 10, 1319-1336.	3.8	5
24	Eddy covariance based surfaceâ€ e tmosphere exchange and crop coefficient determination in a mountainous peatland. Ecohydrology, 2019, 12, e2047.	2.4	5
25	A Bayesian sequential updating approach to predict phenology of silage maize. Biogeosciences, 2022, 19, 2187-2209.	3.3	4
26	Same soil, different climate: Crop model intercomparison on translocated lysimeters. Vadose Zone Journal, 2022, 21, .	2.2	4
27	Managing collaborative research data for integrated, interdisciplinary environmental research. Earth Science Informatics, 2020, 13, 641-654.	3.2	3
28	Diagnosing similarities in probabilistic multi-model ensembles: an application to soil–plant-growth-modeling. Modeling Earth Systems and Environment, 0, , .	3.4	2