Mingzheng Ge

List of Publications by Citations

Source: https://exaly.com/author-pdf/4046625/mingzheng-ge-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15 1,947 30 31 h-index g-index citations papers 11.6 2,648 5.06 31 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
30	A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 6772-6801	13	655
29	Robust fluorine-free superhydrophobic PDMSBrmosil@fabrics for highly effective self-cleaning and efficient oilWater separation. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 12179-12187	13	336
28	Rational design of materials interface at nanoscale towards intelligent oil-water separation. <i>Nanoscale Horizons</i> , 2018 , 3, 235-260	10.8	192
27	A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. <i>Chemical Engineering Journal</i> , 2020 , 399, 125746	14.7	119
26	Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS Anode for Lithium-Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3656-3660	16.4	117
25	A PDMS-in-waterDemulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. <i>Nanoscale Horizons</i> , 2020 , 5, 65-73	10.8	107
24	Recent Progress of Polysaccharide-Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900761	4.6	103
23	Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 13, 67-87	9.5	57
22	Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. <i>Advanced Materials</i> , 2021 , 33, e2004577	24	51
21	Constructing Mechanochemical Durable and Self-Healing Superhydrophobic Surfaces. <i>ACS Omega</i> , 2020 , 5, 986-994	3.9	39
20	Surface Passivation Using Two Dimensional Perovskites Towards Efficient and Stable Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , e2105635	24	35
19	Mechanically Reinforced Localized Structure Design to Stabilize Solid-Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO Nanotubes. <i>Small</i> , 2020 , 16, e2002094	11	26
18	Fluoroethylene Carbonate Enabling a Robust LiF-rich Solid Electrolyte Interphase to Enhance the Stability of the MoS2 Anode for Lithium-Ion Storage. <i>Angewandte Chemie</i> , 2018 , 130, 3718-3722	3.6	22
17	Design of Polypropylene Electret Melt Blown Nonwovens with Superior Filtration Efficiency Stability through Thermally Stimulated Charging. <i>Polymers</i> , 2020 , 12,	4.5	19
16	2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. <i>Small</i> , 2021 , 17, e2	103:514	1 15
15	Interfacial reinforcement structure design towards ultrastable lithium storage in MoS2-based composited electrode. <i>Chemical Engineering Journal</i> , 2021 , 416, 129094	14.7	11
14	Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications <i>Advances in Colloid and Interface Science</i> , 2021 , 300, 102584	14.3	8

LIST OF PUBLICATIONS

13	Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. <i>Small</i> , 2021 , 17, e2102233	11	7
12	Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. <i>Small</i> , 2021 , 17, e2103679	11	6
11	Compressive Imaging Encryption with Secret Sharing Metasurfaces. Advanced Optical Materials, 220025	7 8.1	6
10	Nature-inspired materials and designs for flexible lithium-ion batteries		5
9	A strong Lewis acid imparts high ionic conductivity and interfacial stability to polymer composite electrolytes towards all-solid-state Li-metal batteries. <i>Science China Materials</i> ,1	7.1	3
8	Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. <i>Chemical Engineering Journal</i> , 2021 , 431, 133206	14.7	2
7	In Operando Neutron Scattering Multiple-Scale Studies of Lithium-Ion Batteries Small, 2022, e210749	111	2
6	Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for High-Performance supercapacitors. <i>Applied Surface Science</i> , 2022 , 596, 153582	6.7	2
5	Engineering the composition and structure of superaerophobic nanosheet array for efficient hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 433, 133517	14.7	1
4	Rational Design of Electrospun Nanofibers for Gas Purification: Principles, Opportunities, and Challenges. <i>Chemical Engineering Journal</i> , 2022 , 137099	14.7	1
3	Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives (Small 43/2021). <i>Small</i> , 2021 , 17, 2170227	11	O
2	Silicon Anodes: Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications (Adv. Mater. 16/2021). <i>Advanced Materials</i> , 2021 , 33, 2170124	24	O
1	Silicon-Based Anode Materials: Mechanically Reinforced Localized Structure Design to Stabilize Solid Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO2 Nanotubes (Small 30/2020). Small 2020, 16, 2070169	11	