Liming Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4046559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties and energy absorption capabilities of functionally graded lattice structures: Experiments and simulations. International Journal of Mechanical Sciences, 2020, 182, 105735.	6.7	145
2	Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy, 2020, 76, 105047.	16.0	69
3	Instantaneous peak 2.1 W-level hybrid energy harvesting from human motions for self-charging battery-powered electronics. Nano Energy, 2021, 81, 105629.	16.0	41
4	Legless soft robots capable of rapid, continuous, and steered jumping. Nature Communications, 2021, 12, 7028.	12.8	38
5	Automated Parallel Electrical Characterization of Cells Using Optically-Induced Dielectrophoresis. IEEE Transactions on Automation Science and Engineering, 2020, 17, 1084-1092.	5.2	27
6	A New Multi-Mode Perfusion System for Ex Vivo Heart Perfusion Study. Journal of Medical Systems, 2018, 42, 25.	3.6	21
7	Review of Recent Progress in Robotic Knee Prosthesis Related Techniques: Structure, Actuation and Control. Journal of Bionic Engineering, 2021, 18, 764-785.	5.0	19
8	Harnessing energy from suspension systems of oceanic vehicles with high-performance piezoelectric generators. Energy, 2021, 228, 120523.	8.8	18
9	Design and Control of a Piezo Drill for Robotic Piezo-Driven Cell Penetration. IEEE Robotics and Automation Letters, 2020, 5, 339-345.	5.1	17
10	Comparing Donor Heart Assessment Strategies During Ex Situ Heart Perfusion to Better Estimate Posttransplant Cardiac Function. Transplantation, 2020, 104, 1890-1898.	1.0	13
11	Dynamic Metabolic Changes During Prolonged Ex Situ Heart Perfusion Are Associated With Myocardial Functional Decline. Frontiers in Immunology, 0, 13, .	4.8	13
12	Influence of relative density distribution rules on the mechanical compression responses of additive manufactured Ti6Al4V graded lattice structures. Mechanics of Advanced Materials and Structures, 2023, 30, 114-130.	2.6	12
13	The implementation of physiological afterload during ex situ heart perfusion augments prediction of posttransplant function. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H25-H33.	3.2	11
14	The Implementation of an Adjustable Afterload Module for Ex Situ Heart Perfusion. Cardiovascular Engineering and Technology, 2020, 11, 96-110.	1.6	9
15	Design and Experiment of a Deformable Bird-inspired UAV Perching Mechanism. Journal of Bionic Engineering, 2021, 18, 1304-1316.	5.0	9
16	Description of a Novel Set-up for Functional Echocardiographic Assessment of Left Ventricular Performance During Ex Vivo Heart Perfusion. Anesthesia and Analgesia, 2018, 127, e36-e39.	2.2	6
17	Robotic Swarm Control for Precise and On-Demand Embolization. , 2020, , .		6
18	Single-Beat Measurement of Left Ventricular Contractility in Normothermic <i>Ex Situ</i> Perfused Porcine Hearts. IEEE Transactions on Biomedical Engineering, 2020, 67, 3288-3295.	4.2	6

LIMING XIN

0

#	Article	IF	CITATIONS
19	Primed Left Ventricle Heart Perfusion Creates Physiological Aortic Pressure in Porcine Hearts. ASAIO Journal, 2020, 66, 55-63.	1.6	4
20	Involute-arc-leg for Multi-legged Robot: High Stability and Low Energy Consumption. Mechanism and Machine Theory, 2022, 170, 104701.	4.5	4
21	Trajectory Consensus for Coordination of Multiple Curvature-Bounded Vehicles. IEEE Transactions on Cybernetics, 2022, 52, 6307-6319.	9.5	3
22	Model Reference Adaptive Control for Aortic Pressure Regulation in Ex Vivo Heart Perfusion. IEEE Transactions on Control Systems Technology, 2021, 29, 884-892.	5.2	2
23	Mouse on a Ring: A Mouse Action Scheme Based on IMU and Multi-Level Decision Algorithm. IEEE Sensors Journal, 2021, 21, 20512-20520.	4.7	2
24	Preparation of Multi-Scale Hydrogel Scaffolds for Tissue Engineering Through Biologic Hydrogel 3D Printing and Forming System. Journal of Biomaterials and Tissue Engineering, 2018, 8, 1244-1249.	0.1	2
25	Drug-Loaded Vascular Scaffold Fabricated by Coaxial Electrospining and Electro-Hydro-Dynamic Direct-Writing. Journal of Biomaterials and Tissue Engineering, 2018, 8, 665-670.	0.1	1
26	Echocardiographic assessment of left ventricular function in ex situ heart perfusion using pump-supported and passive afterload working mode: a pilot study. Journal of Anesthesia, Analgesia and Critical Care, 2021, 1, .	1.3	1
27	Fabrication of triple-layered bifurcated vascular scaffold with a certain degree of three-dimensional structure. AIP Advances, 2018, 8, 015006.	1.3	0

Automated Aortic Pressure Regulation in ex vivo Heart Perfusion. , 2019, , .