List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4046383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product. Chemical Engineering Journal, 2012, 211-212, 310-317.	6.6	407
2	Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Research, 2004, 38, 2166-2172.	5.3	201
3	Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds. Science of the Total Environment, 2014, 493, 365-376.	3.9	192
4	Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Research, 2013, 47, 5200-5210.	5.3	190
5	Degradation of carbamazepine by Trametes versicolor in an air pulsed fluidized bed bioreactor and identification of intermediates. Water Research, 2012, 46, 955-964.	5.3	178
6	Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Research, 2018, 138, 137-151.	5.3	150
7	Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration and Biodegradation, 2011, 65, 859-865.	1.9	119
8	Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Research, 2017, 116, 65-75.	5.3	99
9	Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment. Journal of Environmental Management, 2013, 130, 242-247.	3.8	98
10	Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Research, 2014, 60, 228-241.	5.3	95
11	Development of a continuous process to adapt the textile wastewater treatment by fungi to industrial conditions. Process Biochemistry, 2008, 43, 1-7.	1.8	87
12	Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes. Chemical Engineering Journal, 2010, 165, 457-464.	6.6	82
13	Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. Journal of Hazardous Materials, 2010, 179, 999-1006.	6.5	79
14	Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Science of the Total Environment, 2014, 500-501, 235-242.	3.9	72
15	Non conventional biological treatment based on Trametes versicolor for the elimination of recalcitrant anticancer drugs in hospital wastewater. Chemosphere, 2015, 136, 9-19.	4.2	72
16	Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere, 2009, 75, 1344-1349.	4.2	69
17	Modeling of adsorption isotherms and kinetics of a tannery dye onto an activated carbon prepared from an agricultural by-product. Fuel Processing Technology, 2013, 106, 408-415.	3.7	69
18	Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biology and Biochemistry, 2010, 42, 2087-2093.	4.2	62

#	Article	IF	CITATIONS
19	The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Science of the Total Environment, 2018, 610-611, 1147-1153.	3.9	62
20	Fungal treatment of metoprolol and its recalcitrant metabolite metoprolol acid in hospital wastewater: Biotransformation, sorption and ecotoxicological impact. Water Research, 2019, 152, 171-180.	5.3	52
21	Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochemical Engineering Journal, 2006, 31, 42-47.	1.8	51
22	Decolorization of a tannery dye: From fungal screening to bioreactor application. Biochemical Engineering Journal, 2011, 56, 184-189.	1.8	50
23	Continuous treatment of non-sterile hospital wastewater by Trametes versicolor: How to increase fungal viability by means of operational strategies and pretreatments. Journal of Hazardous Materials, 2016, 318, 561-570.	6.5	49
24	Preliminary evaluation of <i>Pleurotus ostreatus</i> for the removal of selected pharmaceuticals from hospital wastewater. Biotechnology Progress, 2017, 33, 1529-1537.	1.3	49
25	Stropharia rugosoannulata and Gymnopilus luteofolius: Promising fungal species for pharmaceutical biodegradation in contaminated water. Journal of Environmental Management, 2018, 207, 396-404.	3.8	48
26	Trametes versicolor pellets production: Low-cost medium and scale-up. Biochemical Engineering Journal, 2008, 42, 61-66.	1.8	47
27	The effect of HRT on the decolourisation of the Grey Lanaset G textile dye by Trametes versicolor. Chemical Engineering Journal, 2007, 126, 163-169.	6.6	46
28	Study of the cellular retention time and the partial biomass renovation in a fungal decolourisation continuous process. Water Research, 2006, 40, 1650-1656.	5.3	45
29	Gas pollutants removal in a single- and two-stage ejector–venturi scrubber. Journal of Hazardous Materials, 2002, 90, 251-266.	6.5	44
30	Novel Aerobic Perchloroethylene Degradation by the White-Rot FungusTrametes versicolor. Environmental Science & Technology, 2006, 40, 7796-7802.	4.6	43
31	A comparative life cycle assessment of two treatment technologies for the Grey Lanaset G textile dye: biodegradation by Trametes versicolor and granular activated carbon adsorption. International Journal of Life Cycle Assessment, 2012, 17, 613-624.	2.2	43
32	The relationships between biomass concentration, determined by a capacitance-based probe, rheology and morphology of Saccharopolyspora erythraea cultures. Journal of Biotechnology, 1996, 51, 157-165.	1.9	37
33	Adsorption Step in the Biological Degradation of a Textile Dye. Biotechnology Progress, 2001, 17, 664-668.	1.3	37
34	Application of factorial design to the optimization of medium composition in batch cultures of Streptomyces lividans TK21 producing a hybrid antibiotic. Biotechnology Letters, 1993, 15, 559-564.	1.1	33
35	Olive Oil Mill Waste Waters Decoloration and Detoxification in a Bioreactor by the White Rot Fungus Phanerochaete flavido-alba. Biotechnology Progress, 2002, 18, 660-662.	1.3	33
36	Optimization and enhancement of soil bioremediation by composting using the experimental design technique. Biodegradation, 2010, 21, 345-356.	1.5	33

#	Article	IF	CITATIONS
37	Combining biological processes with UV/H2O2 for metoprolol and metoprolol acid removal in hospital wastewater. Chemical Engineering Journal, 2021, 404, 126482.	6.6	32
38	Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: kinetics, biodegradation pathways, and ecotoxicity of treated waters. Analytical and Bioanalytical Chemistry, 2022, 414, 439-449.	1.9	29
39	Prospects on coupling UV/H2O2 with activated sludge or a fungal treatment for the removal of pharmaceutically active compounds in real hospital wastewater. Science of the Total Environment, 2021, 773, 145374.	3.9	29
40	Degradation of Orange G by Laccase: Fungal Versus Enzymatic Process. Environmental Technology (United Kingdom), 2007, 28, 1103-1110.	1.2	28
41	Preliminary screening of co-substrates for bioremediation of pyrene-contaminated soil through composting. Journal of Hazardous Materials, 2009, 172, 1695-1698.	6.5	28
42	Fungal bioremediation of diuron-contaminated waters: Evaluation of its degradation and the effect of amendable factors on its removal in a trickle-bed reactor under non-sterile conditions. Science of the Total Environment, 2020, 743, 140628.	3.9	26
43	Continuous treatment of clofibric acid by Trametes versicolor in a fluidized bed bioreactor: Identification of transformation products and toxicity assessment. Biochemical Engineering Journal, 2013, 75, 79-85.	1.8	25
44	Anaerobic degradation of PAHs in soil: Impacts of concentration and amendment stability on the PAHs degradation and biogas production. International Biodeterioration and Biodegradation, 2010, 64, 286-292.	1.9	24
45	Granulometry and Surfactants, Key Factors in Desorption and Biodegradation (T. versicolor) of PAHs in Soil and Groundwater. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	23
46	Exploring the degradation capability of Trametes versicolor on selected hydrophobic pesticides through setting sights simultaneously on culture broth and biological matrix. Chemosphere, 2020, 250, 126293.	4.2	23
47	The hydrodynamics of ejector-Venturi scrubbers and their modelling by an annular flow/boundary layer model. Chemical Engineering Science, 2002, 57, 2707-2718.	1.9	22
48	Soil colonization by Trametes versicolor grown on lignocellulosic materials: Substrate selection and naproxen degradation. International Biodeterioration and Biodegradation, 2011, 65, 846-852.	1.9	22
49	Fluid flow and pumping efficiency in an ejector-venturi scrubber. Chemical Engineering and Processing: Process Intensification, 2004, 43, 127-136.	1.8	21
50	Laccase production byTrametes versicolorunder limited-growth conditions using dyes as inducers. Environmental Technology (United Kingdom), 2013, 34, 113-119.	1.2	21
51	The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Science of the Total Environment, 2020, 728, 138414.	3.9	21
52	Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. Journal of Biological Engineering, 2019, 13, 47.	2.0	19
53	The Role of the Liquid Film on the Mass Transfer in Venturi-Based Scrubbers. Chemical Engineering Research and Design, 2004, 82, 372-380.	2.7	18
54	Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water. Environmental Pollution, 2019, 246, 346-356.	3.7	18

#	Article	IF	CITATIONS
55	Pesticide bioremediation by Trametes versicolor: Application in a fixed-bed reactor, sorption contribution and bioregeneration. Science of the Total Environment, 2021, 794, 148386.	3.9	12
56	Influence of process variables in a continuous treatment of non-sterile hospital wastewater by Trametes versicolor and novel method for inoculum production. Journal of Environmental Management, 2018, 212, 415-423.	3.8	11
57	Remediation of bentazone contaminated water by Trametes versicolor: Characterization, identification of transformation products, and implementation in a trickle-bed reactor under non-sterile conditions. Journal of Hazardous Materials, 2021, 409, 124476.	6.5	11
58	Comparison between two reactors using Trametes versicolor for agricultural wastewater treatment under non-sterile condition in sequencing batch mode. Journal of Environmental Management, 2021, 293, 112859.	3.8	11
59	A Simple Structured Model for Continuous Production of a Hybrid Antibiotic by Streptomyces lividans Pellets in a Fluidized-Bed Bioreactor. Applied Biochemistry and Biotechnology, 1999, 80, 39-50.	1.4	10
60	Effect of Different Operational Parameters in the Enhanced Biological Phosphorus Removal Process. Experimental Design and Results. Environmental Technology (United Kingdom), 2001, 22, 1439-1446.	1.2	8
61	Required equilibrium studies for designing a three-phase bioreactor to degrade trichloroethylene (TCE) and tetrachloroethylene (PCE) by Trametes versicolor. Chemical Engineering Journal, 2008, 144, 21-27.	6.6	8
62	Mathematical model for dye decoloration and laccase production by Trametes versicolor in fluidized bioreactor. Biochemical Engineering Journal, 2013, 80, 45-52.	1.8	6
63	THE SPLIT OF THE LIQUID PHASE IN DROPS AND FILM IN AN EJECTOR-VENTURI SCRUBBER. Chemical Engineering Communications, 2004, 191, 398-413.	1.5	3
64	Importance of growth form on production of hybrid antibiotic byStreptomyces lividans TK21 by fed-batch and continuous fermentation. Applied Biochemistry and Biotechnology, 1998, 75, 235-248.	1.4	2
65	Optimisation of the operational conditions of trichloroethylene degradation using Trametes versicolor under quinone redox cycling conditions using central composite design methodology. Biodegradation, 2012, 23, 333-341.	1.5	2
66	Fungal Reactors: A Solution for the Removal of Pharmaceuticals in Urban and Hospital Wastewater. Handbook of Environmental Chemistry, 2020, , 145-162.	0.2	1
67	Developments of Tertiary Level Studies in Biotechnologies and Their Applications in Environmental Bioengineering. Proceedings (mdpi), 2020, 57, 14.	0.2	0