Ravindra K Sinha

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4046277/ravindra-k-sinha-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

91 2,347 27 44 g-index

120 2,868 4.2 5.31 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
91	Impact of thermal and refractive index tuning on the bandgap and band-edges of a silicon photonic crystal waveguide with sensing applications. <i>Optics Communications</i> , 2022 , 128348	2	O
90	Taxonomic revision of the South Asian River dolphins (Platanista): Indus and Ganges River dolphins are separate species. <i>Marine Mammal Science</i> , 2021 , 37, 1022	1.9	6
89	Flat photonics for broadband light-trapping. <i>Applied Physics Letters</i> , 2020 , 117, 241105	3.4	3
88	Study of Sonication Assisted Synthesis of Molybdenum Disulfide (MoS2) Nanosheets. <i>Materials Today: Proceedings</i> , 2020 , 21, 1969-1975	1.4	6
87	High-performance dual cavity-interferometric volatile gas sensor utilizing Graphene/PMMA nanocomposite. <i>Sensors and Actuators B: Chemical</i> , 2020 , 312, 127921	8.5	11
86	Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing. <i>Optics Communications</i> , 2020 , 462, 125327	2	12
85	High-Q All-Dielectric Metasurface: Super and Suppressed Optical Absorption. <i>ACS Photonics</i> , 2020 , 7, 1436-1443	6.3	44
84	Metal-organic frameworks-derived titanium dioxidellarbon nanocomposite for supercapacitor applications. <i>International Journal of Energy Research</i> , 2020 , 44, 6269-6284	4.5	23
83	TiO nanofibres decorated with green-synthesized P@CQDs for the efficient photocatalytic degradation of organic dyes and pharmaceutical drugs <i>RSC Advances</i> , 2020 , 10, 8941-8948	3.7	23
82	GAPS-megacities: A new global platform for investigating persistent organic pollutants and chemicals of emerging concern in urban air. <i>Environmental Pollution</i> , 2020 , 267, 115416	9.3	20
81	Two-dimensional transition metal dichalcogenides assisted biofunctionalized optical fiber SPR biosensor for efficient and rapid detection of bovine serum albumin. <i>Scientific Reports</i> , 2019 , 9, 6987	4.9	44
80	Tumor blood perfusion-based requirement of nanoparticle dose-loadings for plasmonic photothermal therapy. <i>Nanomedicine</i> , 2019 , 14, 1841-1855	5.6	4
79	Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure. <i>Environment International</i> , 2019 , 133, 105178	12.9	53
78	Green synthesized plasmonic nanostructure decorated TiO2 nanofibers for photoelectrochemical hydrogen production. <i>Solar Energy</i> , 2019 , 193, 715-723	6.8	10
77	Fiber optic Fabry P erot interferometer sensor: an efficient and fast approach for ammonia gas sensing. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2019 , 36, 684	1.7	13
76	Negative axicon tip-based fiber optic interferometer cavity sensor for volatile gas sensing. <i>Optics Express</i> , 2019 , 27, 7277-7290	3.3	19
75	Negative axicon tip micro-cavity with a polymer incorporated optical fiber temperature sensor. <i>OSA Continuum</i> , 2019 , 2, 2353	1.4	1

(2016-2019)

74	Label-free detection of Escherichia coli bacteria by cascaded chirped long period gratings immunosensor. <i>Review of Scientific Instruments</i> , 2019 , 90, 025003	1.7	16
73	Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS) nanosheets. <i>Biosensors and Bioelectronics</i> , 2019 , 126, 501-509	11.8	85
72	Design and Analysis of Dispersion Engineered Rib Waveguides for On-Chip Mid-Infrared Supercontinuum. <i>Journal of Lightwave Technology</i> , 2018 , 36, 1993-1999	4	15
71	A label-free fiber optic biosensor for Salmonella Typhimurium detection. <i>Optical Fiber Technology</i> , 2018 , 46, 95-103	2.4	17
70	Thermal effects in single point diamond turning: Analysis, modeling and experimental study. <i>Measurement: Journal of the International Measurement Confederation</i> , 2017 , 102, 96-105	4.6	19
69	Investigation of charge-separation/change in dipole moment of 7-azaindole: Quantitative measurement using solvatochromic shifts and computational approaches. <i>Journal of Molecular Liquids</i> , 2017 , 231, 39-44	6	12
68	Deep Seated Negative Axicon in Selective Optical Fiber Tip and Collimated Bessel Beam. <i>IEEE Photonics Technology Letters</i> , 2017 , 29, 786-789	2.2	15
67	Realization of all optical logic gates using universal NAND gates on photonic crystal platform. <i>Superlattices and Microstructures</i> , 2017 , 109, 619-625	2.8	35
66	Occurrence and fate of parabens and their metabolites in five sewage treatment plants in India. <i>Science of the Total Environment</i> , 2017 , 593-594, 592-598	10.2	57
65	LiTaO3 based metamaterial perfect absorber for terahertz spectrum. <i>Superlattices and Microstructures</i> , 2017 , 111, 754-759	2.8	10
64	Design and modelling of dispersion-engineered rib waveguide for ultra broadband mid-infrared supercontinuum generation. <i>Journal of Modern Optics</i> , 2017 , 64, 143-149	1.1	24
63	Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain 2017 ,		1
62	White light emission and color tunability of dysprosium doped barium silicate glasses. <i>Journal of Luminescence</i> , 2016 , 169, 121-127	3.8	102
61	Cladding doped defect-core large mode area W-type photonic crystal fiber 2016,		1
60	Synthetic Phenolic Antioxidants and Their Metabolites in Indoor Dust from Homes and Microenvironments. <i>Environmental Science & Environmental Science </i>	10.3	62
59	Musculoskeletal-based finite element analysis of femur after total hip replacement. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2016 , 230, 553-60	1.7	5
58	Assessing Dicofol Concentrations in Air: Retrospective Analysis of Global Atmospheric Passive Sampling Network Samples from Agricultural Sites in India. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 150-155	11	12
57	Distribution and Relationships of Antimicrobial Resistance Determinants among Extended-Spectrum-Cephalosporin-Resistant or Carbapenem-Resistant Escherichia coli Isolates from Rivers and Sewage Treatment Plants in India. <i>Antimicrobial Agents and Chemotherapy</i> , 2016 ,	5.9	56

3

56	Controlling Parameters for Plasmonic Photothermal Ablation of a Tumor. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22, 1-8	3.8	3
55	Potential application of mono/bi-layer molybdenum disulfide (MoS2) sheet as an efficient transparent conducting electrode in silicon heterojunction solar cells. <i>Journal of Applied Physics</i> , 2016 , 120, 013104	2.5	12
54	Tunable unidirectional scattering of ellipsoidal single nanoparticle. <i>Journal of Applied Physics</i> , 2016 , 119, 243102	2.5	6
53	Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal. <i>Optics Communications</i> , 2016 , 374, 148-155	2	41
52	Design of As2Se3 based chalcogenide ridge waveguide for generation of slow light. <i>Optik</i> , 2016 , 127, 11816-11822	2.5	5
51	Design of small core tellurite photonic crystal fiber for slow-light-based application using stimulated Brillouin scattering. <i>Optical Engineering</i> , 2015 , 54, 075101	1.1	8
50	A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. <i>Environment International</i> , 2015 , 83, 183-91	12.9	165
49	Design and analysis of equiangular spiral photonic crystal fiber for mid-infrared supercontinuum generation. <i>Journal of Modern Optics</i> , 2015 , 62, 1570-1576	1.1	20
48	Design of all optical logic gates in photonic crystal waveguides. <i>Optik</i> , 2015 , 126, 950-955	2.5	73
47	A survey of cyclic and linear siloxanes in indoor dust and their implications for human exposures in twelve countries. <i>Environment International</i> , 2015 , 78, 39-44	12.9	58
46	Broadband Mid-Infrared Supercontinuum Spectra Spanning 2🗓5 fb Using As2Se3 Chalcogenide Glass Triangular-Core Graded-Index Photonic Crystal Fiber. <i>Journal of Lightwave Technology</i> , 2015 , 33, 3914-3920	4	77
45	Slow light generation in single-mode tellurite fibers. <i>Journal of Modern Optics</i> , 2015 , 62, 508-513	1.1	12
44	Occurrence of perchlorate in indoor dust from the United States and eleven other countries: implications for human exposure. <i>Environment International</i> , 2015 , 75, 166-71	12.9	33
43	Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: A new design and analysis. <i>Optics Communications</i> , 2015 , 347, 13-19	2	27
42	Design and analysis of photonic crystal biperiodic waveguide structure based optofluidic-gas sensor. <i>Optik</i> , 2015 , 126, 5172-5175	2.5	11
41	Electrochemically Assembled Gold Nanostructures Platform: Electrochemistry, Kinetic Analysis, and Biomedical Application. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 6261-6271	3.8	11
40	Demonstration of temperature resilient properties of 2D silicon carbide photonic crystal structures and cavity modes. <i>Optik</i> , 2014 , 125, 1663-1666	2.5	4
39	Enhanced field emission properties from CNT arrays synthesized on Inconel superalloy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2014 , 6, 1986-91	9.5	50

(2009-2014)

38	Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. <i>ACS Nano</i> , 2014 , 8, 7763-70	16.7	80
37	Ganges River dolphin: an overview of biology, ecology, and conservation status in India. <i>Ambio</i> , 2014 , 43, 1029-46	6.5	30
36	Electroactive Prussian Blue Encapsulated Iron Oxide Nanostructures for Mediator-Free Cholesterol Estimation. <i>Electroanalysis</i> , 2014 , 26, 1551-1559	3	6
35	Phase control of nanostructured iron oxide for application to biosensor. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 464-474	7-3	31
34	Selectively filled large-mode-area photonic crystal fiber for high power applications 2013,		6
33	Enhanced Fano resonance in silver ellipsoidal plasmonic crystal cavity. <i>Journal of Applied Physics</i> , 2013 , 114, 234305	2.5	6
32	Experimental verification of improved effective index method for endlessly single mode photonic crystal fiber. <i>Optics and Lasers in Engineering</i> , 2012 , 50, 182-186	4.6	11
31	Assessing seasonal and spatial trends of persistent organic pollutants (POPs) in Indian agricultural regions using PUF disk passive air samplers. <i>Environmental Pollution</i> , 2011 , 159, 646-53	9.3	104
30	Design of highly birefringent chalcogenide glass PCF: A simplest design. <i>Optics Communications</i> , 2011 , 284, 1186-1191	2	17
29	Design and analysis of subwavelength plasmonic waveguide array 2011,		1
28	Slow Light Propagation in Liquid-Crystal Infiltrated Silicon-On-Insulator Photonic Crystal Channel Waveguides. <i>Journal of Lightwave Technology</i> , 2010 , 28, 2560-2571	4	10
27	All-angle negative refraction for visible light from left-handed metallo-dielectric photonic crystal: theoretical and numerical demonstration with nanophotonic device application. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 98, 99-106	1.9	6
26	Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. <i>Optics Communications</i> , 2010 , 283, 1331-1337	2	52
25	Characterization of specially designed polarization maintaining photonic crystal fiber from far field radiation patterns. <i>Optics Communications</i> , 2010 , 283, 5007-5011	2	3
24	Titanium buffer layer for improved field emission of CNT based cold cathode. <i>Applied Surface Science</i> , 2010 , 256, 3563-3566	6.7	19
23	Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. <i>Optics Communications</i> , 2009 , 282, 3889-3894	2	50
22	Slow light based optical buffer with high delay bandwidth product in silicon-on-insulator photonic crystal waveguides 2009 ,		1
21	Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal. <i>Optics Express</i> , 2009 , 17, 13315-25	3.3	31

20	. Journal of Lightwave Technology, 2009 , 27, 1725-1733	4	18
19	Coupling Characteristics of Multicore Photonic Crystal Fiber-Based 1\$,times,\$ 4 Power Splitters. Journal of Lightwave Technology, 2009 , 27, 2062-2068	4	24
18	Raman amplification characteristics of As2Se3 photonic crystal fibers. <i>Optics Letters</i> , 2008 , 33, 2431-3	3	8
17	Strategies for realizing photonic crystal fiber bandpass filters. <i>Optics Express</i> , 2008 , 16, 9459-67	3.3	14
16	Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. <i>Optical and Quantum Electronics</i> , 2008 , 40, 603-613	2.4	17
15	Design of optical waveguide polarizer using photonic band gap. <i>Optics Express</i> , 2006 , 14, 10790-4	3.3	36
14	Design of a photonic band gap polarizer. <i>Optical Engineering</i> , 2006 , 45, 110503	1.1	9
13	Modal analysis of highly birefringent elliptical core photonic crystal fibers from scalar and vectorial effective index method 2005 , 6005, 140		
12	Design of Ultra Compact Polarization Splitter Based on the Complete Photonic Band Gap. <i>Optical and Quantum Electronics</i> , 2005 , 37, 889-895	2.4	14
11	Dispersion Properties of Photonic Crystal Fiber: Comparison by Scalar and Fully Vectorial Effective Index Methods. <i>Optical and Quantum Electronics</i> , 2005 , 37, 711-722	2.4	20
10	Modeling of photonic band gap waveguide couplers. <i>Microwave and Optical Technology Letters</i> , 2004 , 43, 47-50	1.2	17
9	Dispersion properties of photonic crystal fibers. <i>Microwave and Optical Technology Letters</i> , 2003 , 37, 129-132	1.2	46
8	Power penalty analysis for realistic weight functions using differential time delay with higher-order dispersion. <i>Optical Fiber Technology</i> , 2002 , 8, 240-255	2.4	22
7	Estimation of splice loss in photonic crystal fibers 2002 , 4655, 296		5
6	Bioaccumulation profiles of polychlorinated biphenyl congeners and organochlorine pesticides in Ganges river dolphins. <i>Environmental Toxicology and Chemistry</i> , 1999 , 18, 1511-1520	3.8	68
5	Bioaccumulation profiles of polychlorinated biphenyl congeners and organochlorine pesticides in Ganges river dolphins 1999 , 18, 1511		7
4	Higher-Order Dispersion Compensation by Differential Time Delay. <i>Optical Fiber Technology</i> , 1998 , 4, 135-143	2.4	17
3	Improved analysis of dispersion compensation using differential time delay for high-speed long-span optical link. <i>Fiber and Integrated Optics</i> , 1997 , 16, 415-426	0.8	13

LIST OF PUBLICATIONS

Sources and Accumulation of Butyltin Compounds in Ganges River Dolphin, Platanista gangetica.

Applied Organometallic Chemistry, 1997, 11, 223-230

STATUS OF GANGES RIVER DOLPHINS (PLATANISTA GANGETICA) IN THE KARNALI, MAHAKALI,

NARAYANI and SAPTA KOSI RIVERS OF NEPAL AND INDIA IN 1993. Marine Mammal Science, 1994,

1.9 25
10, 368-375