
Sue Gibbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045902/publications.pdf Version: 2024-02-01

SHE CIRRS

#	Article	IF	CITATIONS
1	No association found between lateâ€onset inflammatory adverse events after soft tissue filler injections and the adaptive immune system. Journal of Cosmetic Dermatology, 2023, 22, 458-463.	0.8	3
2	CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell Reports, 2022, 38, 110189.	2.9	31
3	Scar formation from the perspective of complexity science: a new look at the biological system as a whole. Journal of Wound Care, 2022, 31, 178-184.	0.5	4
4	Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Experimental Dermatology, 2021, 30, 146-161.	1.4	64
5	Prognostic tools for hypertrophic scar formation based on fundamental differences in systemic immunity. Experimental Dermatology, 2021, 30, 169-178.	1.4	6
6	hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Scientific Reports, 2021, 11, 10770.	1.6	13
7	Assessment of cytotoxicity and sensitization potential of intradermally injected tattoo inks in reconstructed human skin. Contact Dermatitis, 2021, 85, 324-339.	0.8	8
8	Patch test–relevant concentrations of metal salts cause localized cytotoxicity, including apoptosis, in skin ex vivo. Contact Dermatitis, 2021, 85, 531-542.	0.8	4
9	The Bigger Picture: Why Oral Mucosa Heals Better Than Skin. Biomolecules, 2021, 11, 1165.	1.8	49
10	Saliva-derived microcosm biofilms grown on different oral surfaces in vitro. Npj Biofilms and Microbiomes, 2021, 7, 74.	2.9	8
11	Skin Sensitization Tests: The LLNA and the RhE IL-18 Potency. Methods in Molecular Biology, 2021, 2240, 13-29.	0.4	1
12	A Multi-Organ-on-Chip Approach to Investigate How Oral Exposure to Metals Can Cause Systemic Toxicity Leading to Langerhans Cell Activation in Skin. Frontiers in Toxicology, 2021, 3, 824825.	1.6	17
13	Hypertrophic and keloid scars fail to progress from the <scp>CD</scp> 34 ^{â^'} /αâ€smooth muscle actin (α― <scp>SMA</scp>) ⁺ immature scar phenotype and show gradient differences in α― <scp>SMA</scp> and p16 expression. British Journal of Dermatology, 2020, 182, 974-986.	1.4	52
14	Titanium salts tested in reconstructed human skin with integrated <scp>MUTZ</scp> â€3â€derived Langerhans cells show an irritant rather than a sensitizing potential. Contact Dermatitis, 2020, 83, 337-346.	0.8	9
15	Differential influence of <i>Streptococcus mitis</i> on host response to metals in reconstructed human skin and oral mucosa. Contact Dermatitis, 2020, 83, 347-360.	0.8	7
16	O5â€Deconstruction of hampered dendritic cell development by micro-environmental cross-talk in an organotypic human melanoma-in-skin model. , 2020, , .		0
17	The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Frontiers in Cell and Developmental Biology, 2020, 8, 360.	1.8	164
18	Non–heat inactivated autologous serum increases accuracy of in vitro CFSE lymphocyte proliferation test (LPT) for nickel. Clinical and Experimental Allergy, 2020, 50, 722-732.	1.4	8

#	Article	IF	CITATIONS
19	Micro-environmental cross-talk in an organotypic human melanoma-in-skin model directs M2-like monocyte differentiation via IL-10. Cancer Immunology, Immunotherapy, 2020, 69, 2319-2331.	2.0	20
20	Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 761-773.	1.3	31
21	Identification of Contact Allergens by In Vitro Cell Culture-Based Methods. , 2020, , 1589-1607.		Ο
22	Skin substitutes are more potent than dermal or epidermal substitutes in stimulating endothelial cell sprouting. BMC Biomedical Engineering, 2019, 1, 18.	1.7	3
23	Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Frontiers in Cellular and Infection Microbiology, 2019, 9, 282.	1.8	31
24	Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discovery Today, 2019, 24, 1899-1910.	3.2	52
25	Monocytes co-cultured with reconstructed keloid and normal skin models skew towards M2 macrophage phenotype. Archives of Dermatological Research, 2019, 311, 615-627.	1.1	16
26	Regenerative potential of adipocytes in hypertrophic scars is mediated by myofibroblast reprogramming. Journal of Molecular Medicine, 2019, 97, 761-775.	1.7	24
27	Evaluation of a novel oral mucosa in vitro implantation model for analysis of molecular interactions with dental abutment surfaces. Clinical Implant Dentistry and Related Research, 2019, 21, 25-33.	1.6	26
28	Human saliva stimulates skin and oral wound healing in vitro. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1079-1092.	1.3	33
29	Biology of soft tissue repair: gingival epithelium in wound healing and attachment to the tooth and abutment surface. , 2019, 38, 63-78.		51
30	Characterization of In Vitro Reconstructed Human Normotrophic, Hypertrophic, and Keloid Scar Models. Tissue Engineering - Part C: Methods, 2018, 24, 242-253.	1.1	29
31	Development of an In Vitro Method to Estimate the Sensitization Induction Level of Contact Allergens. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2018, 75, 20.15.1-20.15.20.	1.1	6
32	Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms. Archives of Toxicology, 2018, 92, 557-569.	1.9	35
33	Endothelial cells enhance adipose mesenchymal stromal cell-mediated matrix contraction via ALK receptors and reduced follistatin: Potential role of endothelial cells in skin fibrosis. Journal of Cellular Physiology, 2018, 233, 6714-6722.	2.0	5
34	The aetiopathogenesis of capsular contracture: A systematic review of the literature. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2018, 71, 307-317.	0.5	45
35	Assessment of metal sensitizer potency with the reconstructed human epidermis IL-18 assay. Toxicology, 2018, 393, 62-72.	2.0	23
36	Allergens of permanent hair dyes induces epidermal damage, skin barrier loss and IL-1 α increase in epidermal in vitro model. Food and Chemical Toxicology, 2018, 112, 265-272.	1.8	12

#	Article	IF	CITATIONS
37	Comparison of advanced therapy medicinal product gingiva and skin substitutes and their in vitro wound healing potentials. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1088-e1097.	1.3	8
38	Application of Microphysiological Systems to Enhance Safety Assessment in Drug Discovery. Annual Review of Pharmacology and Toxicology, 2018, 58, 65-82.	4.2	95
39	Saliva-Derived Commensal and Pathogenic Biofilms in a Human Gingiva Model. Journal of Dental Research, 2018, 97, 201-208.	2.5	36
40	Identification of Contact Allergens by In Vitro Cell Culture-Based Methods. , 2018, , 1-20.		1
41	Reconstructed human keloid models show heterogeneity within keloid scars. Archives of Dermatological Research, 2018, 310, 815-826.	1.1	22
42	Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Scientific Reports, 2018, 8, 16061.	1.6	61
43	The Histological Composition of Capsular Contracture Focussed on the Inner Layer of the Capsule: An Intra-Donor Baker-I Versus Baker-IV Comparison. Aesthetic Plastic Surgery, 2018, 42, 1485-1491.	0.5	26
44	A retrospective study on titanium sensitivity: Patch test materials and manifestations. Contact Dermatitis, 2018, 79, 85-90.	0.8	33
45	An Organotypic Reconstructed Human Urethra to Study <i>Chlamydia trachomatis</i> Infection. Tissue Engineering - Part A, 2018, 24, 1663-1671.	1.6	2
46	Progress on Reconstructed Human Skin Models for Allergy Research and Identifying Contact Sensitizers. Current Topics in Microbiology and Immunology, 2018, 430, 103-129.	0.7	16
47	Comparison of the skin sensitization potential of 3 red and 2 black tattoo inks using interleukinâ€18 as a biomarker in a reconstructed human skin model. Contact Dermatitis, 2018, 79, 336-345.	0.8	29
48	Stratum corneum profiles of inflammatory mediators in patch test reactions to common contact allergens and sodium lauryl sulfate. British Journal of Dermatology, 2017, 176, 1533-1540.	1.4	23
49	Development of an in vitro method to estimate the sensitization induction level of contact allergens. Toxicology Letters, 2017, 271, 1-11.	0.4	26
50	Progress and Future Prospectives in Skin-on-Chip Development with Emphasis on the use of Different Cell Types and Technical Challenges. Stem Cell Reviews and Reports, 2017, 13, 418-429.	5.6	87
51	Stimulation of oral fibroblast chemokine receptors identifies CCR3 and CCR4 as potential wound healing targets. Journal of Cellular Physiology, 2017, 232, 2996-3005.	2.0	35
52	Preliminary performance data of the <scp>RHE</scp> / <scp>IL</scp> â€18 assay performed on SkinEthic ^{â,,¢} <scp>RHE</scp> for the identification of contact sensitizers. International Journal of Cosmetic Science, 2017, 39, 121-132.	1.2	10
53	Identification of HIF-2α-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis, 2017, 20, 39-54.	3.7	50
54	Increased epidermal thickness and abnormal epidermal differentiation in keloid scars. British Journal of Dermatology, 2017, 176, 116-126.	1.4	70

#	Article	IF	CITATIONS
55	Saliva-Derived Host Defense Peptides Histatin1 and LL-37 Increase Secretion of Antimicrobial Skin and Oral Mucosa Chemokine CCL20 in an IL-1 <i>α</i> -Independent Manner. Journal of Immunology Research, 2017, 2017, 1-11.	0.9	14
56	Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting. International Journal of Molecular Sciences, 2017, 18, 1790.	1.8	8
57	Comparative phenotypic and functional analysis of migratory dendritic cell subsets from human oral mucosa and skin. PLoS ONE, 2017, 12, e0180333.	1.1	15
58	Epidermal Equivalent (EE) Potency Assay. , 2017, , 273-287.		0
59	Alternative Approach for Potency Assessment: In Vitro Methods. Cosmetics, 2016, 3, 7.	1.5	7
60	Inhibited early immunologic response is associated with hypertrophic scarring. Experimental Dermatology, 2016, 25, 797-804.	1.4	34
61	Advances in Bioprinting Technologies for Craniofacial Reconstruction. Trends in Biotechnology, 2016, 34, 700-710.	4.9	80
62	Mathematical modelling of angiogenesis using continuous cell-based models. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1577-1600.	1.4	29
63	The Human Glycoprotein Salivary Agglutinin Inhibits the Interaction of DC-SIGN and Langerin with Oral Micro-Organisms. Journal of Innate Immunity, 2016, 8, 350-361.	1.8	11
64	Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Engineering - Part C: Methods, 2016, 22, 781-791.	1.1	55
65	Outcome of Burns Treated with Autologous Cultured Proliferating Epidermal Cells: A Prospective Randomized Multicenter Intrapatient Comparative Trial. Cell Transplantation, 2016, 25, 437-448.	1.2	42
66	Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells. Wound Repair and Regeneration, 2016, 24, 100-109.	1.5	52
67	Immune-competent human skin disease models. Drug Discovery Today, 2016, 21, 1479-1488.	3.2	39
68	Sensing of latent EBV infection through exosomal transfer of 5′pppRNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E587-96.	3.3	136
69	Soft Tissue Augmentation Techniques and Materials Used in the Oral Cavity. Implant Dentistry, 2016, 25, 427-434.	1.7	25
70	Methods to study differences in cell mobility during skin wound healing in vitro. Journal of Biomechanics, 2016, 49, 1381-1387.	0.9	45
71	The Influence of Chronic Wound Extracts on Inflammatory Cytokine and Histatin Stability. PLoS ONE, 2016, 11, e0152613.	1.1	13
72	Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE, 2016, 11, e0167056.	1.1	24

#	Article	lF	CITATIONS
73	MUTZ-3 Langerhans Cell maturation and CXCL12 independent migration in reconstructed human gingiva. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 423-434.	0.9	14
74	Dental metal-induced innate reactivity in keratinocytes. Toxicology in Vitro, 2015, 30, 325-330.	1.1	13
75	Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Experimental Dermatology, 2015, 24, 623-629.	1.4	57
76	Gingiva Equivalents Secrete Negligible Amounts of Key Chemokines Involved in Langerhans Cell Migration Compared to Skin Equivalents. Journal of Immunology Research, 2015, 2015, 1-11.	0.9	33
77	Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury). Toxicology in Vitro, 2015, 29, 363-369.	1.1	18
78	MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicology and Applied Pharmacology, 2015, 287, 35-42.	1.3	64
79	Development of a Full-Thickness Human Skin Equivalent <i>In Vitro</i> Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Engineering - Part A, 2015, 21, 2448-2459.	1.6	94
80	Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicology in Vitro, 2015, 29, 259-270.	1.1	112
81	Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective. Experimental Dermatology, 2014, 23, 382-386.	1.4	109
82	Differential Response of Human Adipose Tissue-Derived Mesenchymal Stem Cells, Dermal Fibroblasts, and Keratinocytes to Burn Wound Exudates: Potential Role of Skin-Specific Chemokine CCL27. Tissue Engineering - Part A, 2014, 20, 197-209.	1.6	53
83	International ring trial of the epidermal equivalent sensitizer potency assay: reproducibility and predictive capacity. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 251-268.	0.9	19
84	Transfer of a two-tiered keratinocyte assay: IL-18 production by NCTC2544 to determine the skin sensitizing capacity and epidermal equivalent assay to determine sensitizer potency. Toxicology in Vitro, 2013, 27, 1135-1150.	1.1	39
85	An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicology and Applied Pharmacology, 2013, 272, 529-541.	1.3	99
86	Dendritic cell migration assay: A potential prediction model for identification of contact allergens. Toxicology in Vitro, 2013, 27, 1170-1179.	1.1	21
87	Autologous skin substitute for hardâ€toâ€heal ulcers: Retrospective analysis on safety, applicability, and efficacy in an outpatient and hospitalized setting. Wound Repair and Regeneration, 2013, 21, 667-676.	1.5	22
88	Autocrine Regulation of Re-Epithelialization After Wounding by Chemokine Receptors CCR1, CCR10, CXCR1, CXCR1, CXCR2, and CXCR3. Journal of Investigative Dermatology, 2012, 132, 216-225.	0.3	91
89	Simple wound exudate collection method identifies bioactive cytokines and chemokines in (arterio) venous ulcers. Wound Repair and Regeneration, 2012, 20, 294-303.	1.5	19
90	CCL5 and CCL20 mediate immigration of Langerhans cells into the epidermis of full thickness human skin equivalents. European Journal of Cell Biology, 2012, 91, 765-773.	1.6	34

#	Article	IF	CITATIONS
91	Development, validation and testing of a human tissue engineered hypertrophic scar model. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 389-402.	0.9	48
92	Identification of Contact Allergens by In Vitro Cell Culture–Based Methods. , 2012, , 1155-1168.		0
93	A potential in vitro epidermal equivalent assay to determine sensitizer potency. Toxicology in Vitro, 2011, 25, 347-357.	1.1	54
94	Inter-laboratory study of the in vitro dendritic cell migration assay for identification of contact allergens. Toxicology in Vitro, 2011, 25, 2124-2134.	1.1	25
95	In vitro platforms for tissue engineering: implications for basic research and clinical translation. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, e164-e167.	1.3	47
96	Irritant-Induced Migration of Langerhans Cells Coincides with an IL-10-Dependent Switch to a Macrophage-Like Phenotype. Journal of Investigative Dermatology, 2011, 131, 418-425.	0.3	28
97	Technical Advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. Journal of Leukocyte Biology, 2011, 90, 1027-1033.	1.5	72
98	Mechanisms of Irritant and Allergic Contact Dermatitis. , 2011, , 43-90.		31
99	Use of a Collagen–Elastin Matrix as Transport Carrier System to Transfer Proliferating Epidermal Cells to Human Dermis in Vitro. Cell Transplantation, 2010, 19, 1339-1348.	1.2	38
100	Epidermisâ€ŧoâ€dermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. European Journal of Immunology, 2010, 40, 2026-2034.	1.6	50
101	Adenovirus retargeting to surface expressed antigens on oral mucosa. Journal of Gene Medicine, 2010, 12, 365-376.	1.4	12
102	Comparison of a novel CXCL12/CCL5 dependent migration assay with CXCL8 secretion and CD86 expression for distinguishing sensitizers from non-sensitizers using MUTZ-3 Langerhans cells. Toxicology in Vitro, 2010, 24, 578-585.	1.1	43
103	Cytokine Release in Tissue-Engineered Epidermal Equivalents After Prolonged Mechanical Loading. Methods in Molecular Biology, 2010, 585, 335-344.	0.4	5
104	Structureâ€activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1000â€fold. FASEB Journal, 2009, 23, 3928-3935.	0.2	83
105	In vitro Irritation Models and Immune Reactions. Skin Pharmacology and Physiology, 2009, 22, 103-113.	1.1	78
106	Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicology and Applied Pharmacology, 2009, 236, 372-382.	1.3	109
107	Safe cosmetics without animal testing? Contributions of the EU Project Sens-it-iv. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2009, 4, 41-48.	0.5	8
108	Chemokine-Mediated Migration of Skin-Derived Stem Cells: Predominant Role for CCL5/RANTES. Journal of Investigative Dermatology, 2009, 129, 1569-1581.	0.3	91

#	Article	IF	CITATIONS
109	Dendritic cells: biology of the skin. Contact Dermatitis, 2009, 60, 2-20.	0.8	112
110	Potential method to determine irritant potency in vitro – Comparison of two reconstructed epidermal culture models with different barrier competency. Toxicology in Vitro, 2009, 23, 349-355.	1.1	39
111	Histatins Enhance Wound Closure with Oral and Non-oral Cells. Journal of Dental Research, 2009, 88, 846-850.	2.5	57
112	CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. European Journal of Immunology, 2008, 38, 3050-3059.	1.6	109
113	Calcineurin Activity and Inhibition in Skin and (Epi)Dermal Cell Cultures. Journal of Investigative Dermatology, 2008, 128, 1686-1690.	0.3	16
114	Comparison of Autologous Full-Thickness Gingiva and Skin Substitutes for Wound Healing. Cell Transplantation, 2008, 17, 1199-1209.	1.2	27
115	The Development of Novel Approaches to the Identification of Chemical and Protein Respiratory Allergens. ATLA Alternatives To Laboratory Animals, 2008, 36, 591-598.	0.7	18
116	Xenobiotic Metabolism in Human Skin and 3D Human Skin Reconstructs: A Review. Current Drug Metabolism, 2007, 8, 758-772.	0.7	56
117	A cytotoxic analysis of antiseptic medication on skin substitutes and autograft. British Journal of Dermatology, 2007, 157, 33-40.	1.4	54
118	Differential suppression of dendritic cell cytokine production by anti-inflammatory drugs. British Journal of Dermatology, 2007, 158, 071119222739002-???.	1.4	20
119	Woundâ€healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair and Regeneration, 2007, 15, 708-717.	1.5	136
120	Cytokines at different stratum corneum levels in normal and sodium lauryl sulphate-irritated skin. Skin Research and Technology, 2007, 13, 390-398.	0.8	64
121	Allergic contact dermatitis to nickel: modified in vitro test protocols for better detection of allergen-specific response. Contact Dermatitis, 2007, 56, 63-69.	0.8	57
122	Cytokine and chemokine release upon prolonged mechanical loading of the epidermis. Experimental Dermatology, 2007, 16, 567-573.	1.4	44
123	CXCL8 secretion by dendritic cells predicts contact allergens from irritants. Toxicology in Vitro, 2006, 20, 117-124.	1.1	93
124	Intrinsic characteristics of contact and respiratory allergens influence production of polarizing cytokines by dendritic cells. Contact Dermatitis, 2006, 55, 238-245.	0.8	36
125	Autologous full-thickness skin substitute for healing chronic wounds. British Journal of Dermatology, 2006, 155, 267-274.	1.4	72
126	Comparison of Wound Closure after Burn and Cold Injury in Human Skin Equivalents. Journal of Investigative Dermatology, 2006, 126, 1918-1921.	0.3	34

#	Article	IF	CITATIONS
127	Induction of cytokine (interleukin-1alpha and tumor necrosis factor-alpha) and chemokine (CCL20,) Tj ETQq1 14, 109-116.	1 0.784314 1.4	rgBT /Overloc 94
128	Nickel-responding T cells are CD4+ CLA+ CD45RO+ and express chemokine receptors CXCR3, CCR4 and CCR10. British Journal of Dermatology, 2004, 151, 32-41.	1.4	49
129	Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Laboratory Investigation, 2004, 84, 102-112.	1.7	126
130	Increased CCL27–CCR10 expression in allergic contact dermatitis: implications for local skin memory. Journal of Pathology, 2004, 204, 39-46.	2.1	77
131	Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Laboratory Investigation, 2004, 84, 102-112.	1.7	7
132	Characterization of Reconstructed Skin Models. Skin Pharmacology and Physiology, 2002, 15, 4-17.	1.1	120
133	Effect of skin barrier competence on SLS and water-induced IL-1α expression. Experimental Dermatology, 2002, 11, 217-223.	1.4	46
134	Effect of fibroblasts on epidermal regeneration. British Journal of Dermatology, 2002, 147, 230-243.	1.4	263
135	Barrier Function in Reconstructed Epidermis and Its Resemblance to Native Human Skin. Skin Pharmacology and Physiology, 2001, 14, 63-71.	1.1	73
136	Epidermal growth factor and keratinocyte growth factor differentially regulate epidermal migration, growth, and differentiation. Wound Repair and Regeneration, 2000, 8, 192-203.	1.5	107
137	Melanosome Capping of Keratinocytes in Pigmented Reconstructed Epidermis - Effect of Ultraviolet Radiation and 3-lsobutyl-1-Methyl-Xanthine on Melanogenesis. Pigment Cell & Melanoma Research, 2000, 13, 458-466.	4.0	72
138	Intrinsic regulation of differentiation markers in human epidermis, hard palate and buccal mucosa. Archives of Oral Biology, 2000, 45, 149-158.	0.8	75
139	Temperature-sensitive regulation of epidermal morphogenesis and the expression of cornified envelope precursors by EGF and TGF1±. Cell and Tissue Research, 1998, 292, 107-114.	1.5	17
140	Culture of reconstructed epidermis in a defined medium at 33° C shows a delayed epidermal maturation, prolonged lifespan and improved stratum corneum. Archives of Dermatological Research, 1997, 289, 585-595.	1.1	59
141	Regulation of keratinocyte proliferation and differentiation by all-trans-retinoic acid, 9-cis-retinoic acid acid acid acid and 1,25-dihydroxy vitamin D3. Archives of Dermatological Research, 1996, 288, 729-738.	1.1	52