Derck Schlettwein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrodeposition of Inorganic/Organic Hybrid Thin Films. Advanced Functional Materials, 2009, 19, 17-43.	14.9	315
2	Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance. Advanced Materials, 2000, 12, 1214-1217.	21.0	220
3	Self-Assembly of Zinc Oxide Thin Films Modified with Tetrasulfonated Metallophthalocyanines by One-Step Electrodeposition. Chemistry of Materials, 1999, 11, 2657-2667.	6.7	205
4	Investigations of n/p-junction photovoltaic cells of perylenetetracarboxylic acid diimides and phthalocyanines. Journal of Materials Chemistry, 1995, 5, 1819-1829.	6.7	145
5	Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 2004, , 400-401.	4.1	141
6	Selective electroacatalysis for CO2 reduction in the aqueous phase using cobalt phthalocyanine/poly-4-vinylpyridine modified electrodes. Journal of Electroanalytical Chemistry, 1995, 385, 209-225.	3.8	132
7	Exciton Dynamics and Electron–Phonon Coupling Affect the Photovoltaic Performance of the Cs ₂ AgBiBr ₆ Double Perovskite. Journal of Physical Chemistry C, 2018, 122, 25940-25947.	3.1	127
8	Conduction type of substituted tetraazaporphyrins and perylene tetracarboxylic acid diimides as detected by thermoelectric power measurements. Chemistry of Materials, 1994, 6, 3-6.	6.7	124
9	Electronic Energy Levels in Individual Molecules, Thin Films, and Organic Heterojunctions of Substituted Phthalocyanines. Journal of Physical Chemistry B, 2001, 105, 4791-4800.	2.6	121
10	Light-induced dioxygen reduction at thin film electrodes of various porphyrins. The Journal of Physical Chemistry, 1991, 95, 1748-1755.	2.9	118
11	A Novel Route To Molecular Self-Assembly: Self-Intermixed Monolayer Phases. ChemPhysChem, 2002, 3, 881-885.	2.1	113
12	LiPON thin films with high nitrogen content for application in lithium batteries and electrochromic devices prepared by RF magnetron sputtering. Solid State Ionics, 2015, 282, 63-69.	2.7	108
13	Adsorption and two-dimensional phases of a large polar molecule:â€,Sub-phthalocyanine on Ag(111). Physical Review B, 2003, 68, .	3.2	104
14	Photochemical stability of various porphyrins in solution and as thin film electrodes. Journal of the Chemical Society Perkin Transactions II, 1993, , 481-488.	0.9	100
15	Influence of surface reactions and ionization gradients on junction properties of F16PcZn. Journal of Materials Chemistry, 1998, 8, 945-954.	6.7	100
16	Redox mediation enabled by immobilised centres in the pores of a metal–organic framework grown by liquid phase epitaxy. Chemical Communications, 2012, 48, 663-665.	4.1	91
17	Spectroelectrochemical investigations on the reduction of thin films of hexadecafluorophthalocyaninatozinc (F16PcZn). Journal of Electroanalytical Chemistry, 1999, 476, 148-158.	3.8	89
18	Correlation of Frontier Orbital Positions and Conduction Type of Molecular Semiconductors As Derived from UPS in Combination with Electrical and Photoelectrochemical Experiments. The Journal of Physical Chemistry, 1994, 98, 11771-11779.	2.9	85

#	Article	IF	CITATIONS
19	Ultrathin Films of Perylenedianhydride and Perylenebis(dicarboximide) Dyes on (001) Alkali Halide Surfaces. Chemistry of Materials, 1998, 10, 601-612.	6.7	85
20	Fluorinated phthalocyanines as molecular semiconductor thin films. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 409-420.	1.8	79
21	Photoelectrochemical sensitisation of ZnO–tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly. Journal of Electroanalytical Chemistry, 2000, 481, 42-51.	3.8	74
22	Reversible Reduction and Reoxidation of Thin Films of Tetrapyrazinotetraazaporphyrines. Journal of the Electrochemical Society, 1989, 136, 2882-2886.	2.9	68
23	Photoelectrochemical Kinetics of Eosin Y-Sensitized Zinc Oxide Films Investigated by Scanning Electrochemical Microscopy. Chemistry - A European Journal, 2006, 12, 5832-5839.	3.3	63
24	Molecular Interactions in Thin Films of Hexadecafluorophthalocyaninatozinc (F16PcZn) as Compared to Islands ofN,Nâ€~Dimethylperylene-3,4,9,10-biscarboximide (MePTCDI). Journal of Physical Chemistry B, 1999, 103, 3078-3086.	2.6	61
25	Charge transport in thin films of molecular semiconductors as investigated by measurements of thermoelectric power and electrical conductivity. Thin Solid Films, 1995, 258, 317-324.	1.8	58
26	Electrochemical reduction of substituted cobalt phthalocyanines adsorbed on graphite. Journal of Electroanalytical Chemistry, 1998, 441, 139-146.	3.8	56
27	Electronic Energy Levels of Organic Dyes on Silicon:Â A Photoelectron Spectroscopy Study of ZnPc, F16ZnPc, and ZnTPP on p-Si(111):H. Journal of Physical Chemistry B, 2004, 108, 19398-19403.	2.6	54
28	Preparation and characterization of methylammonium tin iodide layers as photovoltaic absorbers. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 975-981.	1.8	54
29	Synthesis and electropolymerisation of pyrrol-1-yl substituted phthalocyanines. Journal of Materials Chemistry, 2002, 12, 879-885.	6.7	53
30	Electrochromic Switching of Evaporated Thin Films of Bulky, Electronic Deficient Metallo-Phthalocyanines. Journal of Physical Chemistry C, 2011, 115, 8759-8767.	3.1	52
31	Photoelectrochemical properties of ZnO/tetrasulfophthalocyanine hybrid thin films prepared by electrochemical self-assembly. Physical Chemistry Chemical Physics, 2001, 3, 3387-3392.	2.8	51
32	Stabilization of Organic–Inorganic Perovskite Layers by Partial Substitution of Iodide by Bromide in Methylammonium Lead Iodide. ChemPhysChem, 2016, 17, 1505-1511.	2.1	49
33	Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap. Thin Solid Films, 2004, 466, 320-325.	1.8	47
34	Substrate-Induced Order and Multilayer Epitaxial Growth of Substituted Phthalocyanine Thin Films. Langmuir, 2000, 16, 2872-2881.	3.5	46
35	Self Assembled Growth of Nano Particulate Porous ZnO Thin Film Modified by 2,9,16,23-Tetrasulfophthalocyanatozinc(II) by One-Step Electrodeposition. Chemistry Letters, 1998, 27, 599-600.	1.3	44
36	Photoelectrochemical Investigations of Molecular Semiconductors: Characterization of the Conduction Type of Various Substituted Porphyrins. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1991, 95, 1526-1530.	0.9	42

#	Article	IF	CITATIONS
37	Photoelectrochemical oxidation of 2-mercaptoethanol at the surface of octacyanophthalocyanine thin film electrodes. Journal of Electroanalytical Chemistry, 1996, 405, 149-158.	3.8	42
38	Electrochemical CO2 Reduction Catalysed by Cobalt Octacyanophthalocyanine and its Mechanism. Journal of Porphyrins and Phthalocyanines, 1997, 01, 315-321.	0.8	42
39	Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED. Electrochimica Acta, 2009, 55, 458-464.	5.2	38
40	Lanthanide-Induced Photoluminescence in Lead-Free Cs ₂ AgBiBr ₆ Bulk Perovskite: Insights from Optical and Theoretical Investigations. Journal of Physical Chemistry Letters, 2020, 11, 8893-8900.	4.6	38
41	Site-specific physisorption and chemical reaction of subphthalocyanine molecules on silicon(111)-(7×7). Physical Review B, 2000, 61, 1959-1964.	3.2	37
42	Ordered Growth of Substituted Phthalocyanine Thin Films:  Hexadecafluorophthalocyaninatozinc on Alkali Halide (100) and Microstructured Si Surfaces. Chemistry of Materials, 2000, 12, 989-995.	6.7	37
43	Silicon–organic pigment material hybrids for photovoltaic application. Solar Energy Materials and Solar Cells, 2007, 91, 1873-1886.	6.2	35
44	Photoelectrochemical Investigations on Naphthalocyanine Derivatives in Thin Films. The Journal of Physical Chemistry, 1994, 98, 4760-4766.	2.9	33
45	Phthalocyanines and related macrocycles for multi-electron transfer in catalysis, photochemistry and photoelectrochemistry. Polymers for Advanced Technologies, 1995, 6, 118-130.	3.2	33
46	One-step electrochemical synthesis of ZnO/Ru(dcbpy)2(NCS)2 hybrid thin films and their photoelectrochemical properties. Electrochimica Acta, 2003, 48, 3071-3078.	5.2	33
47	Scanning electrochemical microscope studies of dye regeneration in indoline (D149)-sensitized ZnO photoelectrochemical cells. Journal of Electroanalytical Chemistry, 2010, 650, 24-30.	3.8	32
48	Identification of the mechanism in the photoelectrochemical reduction of oxygen on the surface of a molecular semiconductor. The Journal of Physical Chemistry, 1993, 97, 3333-3337.	2.9	30
49	Photoelectrochemical Effects and (Photo)Conductivity of "N-Type―Phthalocyanines. Molecular Crystals and Liquid Crystals, 1996, 283, 283-291.	0.3	30
50	Title is missing!. Journal of Applied Electrochemistry, 1997, 27, 1172-1178.	2.9	30
51	Influence of the molecular shape on the film growth of a substituted phthalocyanine. Synthetic Metals, 2004, 146, 335-339.	3.9	30
52	Organic n-channels of substituted phthalocyanine thin films grown on smooth insulator surfaces for organic field effect transistors applications. Journal of Materials Research, 2004, 19, 2040-2048.	2.6	29
53	Improvement of Light Harvesting by Addition of a Long-Wavelength Absorber in Dye-Sensitized Solar Cells Based on ZnO and Indoline Dyes. Journal of Physical Chemistry C, 2015, 119, 1298-1311.	3.1	29
54	Opportunities from Doping of Nonâ€Critical Metal Oxides in Last Generation Lightâ€Conversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	19.5	29

#	Article	IF	CITATIONS
55	Charge Transfer and Recombination Kinetics at Electrodes of Molecular Semiconductors Investigated by Intensity Modulated Photocurrent Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 9524-9532.	2.6	28
56	Influence of central metal and ligand system on conduction type and charge carrier transport in phthalocyanine thin films. Advanced Materials for Optics and Electronics, 1996, 6, 239-244.	0.4	27
57	Electrochemical Self-Assembly of ZnO/SO[sub 3]EtPTCDI Hybrid Photoelectrodes. Journal of the Electrochemical Society, 2004, 151, C62.	2.9	27
58	Photovoltaic characteristics and dye regeneration kinetics in D149-sensitized ZnO with varied dye loading and film thickness. Physical Chemistry Chemical Physics, 2012, 14, 7533.	2.8	27
59	Electrochemical properties and optical transmission of high Li ⁺ conducting LiSiPON electrolyte films. Physica Status Solidi (B): Basic Research, 2017, 254, 1600088.	1.5	27
60	Organic molecular beam epitaxial growth of substituted phthalocyanine thin films – tetrapyridotetraazaporhyrins on alkali halide (100) surfaces. Thin Solid Films, 1998, 331, 117-130.	1.8	26
61	Photoelectrochemical characterisation and optimisation of electrodeposited ZnO thin films sensitised by porphyrins and phthalocyanines. Physical Chemistry Chemical Physics, 2006, 8, 3867-3875.	2.8	26
62	Photoelectrochemical Reactions at Phthalocyanine Electrodes. , 2003, , 247-283.		25
63	Photoelectrochemical characterization of electrodeposited ZnO thin films sensitized by octacarboxymetallophthalocyanine derivatives. Journal of Porphyrins and Phthalocyanines, 2010, 14, 142-149.	0.8	25
64	Development of the field-effect mobility in thin films of F16PcCu characterized by electrical in situ measurements during device preparation. Organic Electronics, 2011, 12, 1376-1382.	2.6	25
65	Large Cation Engineering in Two-Dimensional Silver–Bismuth Bromide Double Perovskites. Chemistry of Materials, 2021, 33, 4688-4700.	6.7	25
66	Peripheral ligands as electron storage reservoirs and their role in enhancement of photocatalytic hydrogen generation. Chemical Communications, 2016, 52, 9371-9374.	4.1	24
67	Growth and characterization of thin films prepared from perfluoro-isopropyl-substituted perfluorophthalocyanines. Thin Solid Films, 2009, 517, 4379-4384.	1.8	23
68	Influence of gas molecules on the charge carrier mobility in thin films of semiconducting perylene tetracarboxylic imides. Journal of Applied Physics, 2006, 100, 126104.	2.5	22
69	Modeling of Dendrite Formation as a Consequence of Diffusion-Limited Electrodeposition. Journal of the Electrochemical Society, 2019, 166, D3182-D3189.	2.9	22
70	Semiconducting Behavior of Substituted Tetraâ€azaporphyrin Thin Films in Photoelectrochemical Cells. Journal of the Electrochemical Society, 1993, 140, 1942-1948.	2.9	21
71	Textile electrodes as substrates for the electrodeposition of porous ZnO. Physical Chemistry Chemical Physics, 2008, 10, 1844.	2.8	21
72	Influence of phenylethylammonium iodide as additive in the formamidinium tin iodide perovskite on interfacial characteristics and charge carrier dynamics. APL Materials, 2019, 7, .	5.1	21

#	Article	IF	CITATIONS
73	Electrochromic switching of tungsten oxide films grown by reactive ion-beam sputter deposition. Journal of Materials Science, 2021, 56, 615-628.	3.7	21
74	Role of surface states and adsorbates in time-resolved photocurrent measurements and photovoltage generation at phthalocyaninatozinc(II)-photocathodes. Journal of Electroanalytical Chemistry, 1999, 462, 222-234.	3.8	20
75	Consequences of twisting the aromatic core of N,N′-dimethylperylene-3,4,9,10-biscarboximide by chemical substitution for the electronic coupling and electric transport in thin films. Organic Electronics, 2004, 5, 237-249.	2.6	20
76	Thickness dependence of the LUMO position for phthalocyanines on hydrogen passivated silicon (111). Applied Surface Science, 2004, 234, 138-143.	6.1	20
77	Ultrafast Photodynamics of the Indoline Dye D149 Adsorbed to Porous ZnO in Dye ensitized Solar Cells. ChemPhysChem, 2013, 14, 132-139.	2.1	20
78	Synthesis, optical characterization and thin film preparation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline. Dyes and Pigments, 2018, 158, 334-341.	3.7	20
79	Diverging surface reactions at TiO ₂ - or ZnO-based photoanodes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2019, 21, 13047-13057.	2.8	20
80	Electroluminescence and contact formation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline thin films. Organic Electronics, 2019, 65, 321-326.	2.6	19
81	Observation of a Transient Structural Change during the Reversible Reduction of a Porphyrin Thinâ€Film Electrode. Journal of the Electrochemical Society, 1994, 141, 1735-1739.	2.9	18
82	Wavelength-dependent switching of the photocurrent direction at the surface of molecular semiconductor electrodes based on orbital-confined excitation and transfer of charge carriers from higher excited states. Electrochimica Acta, 2000, 45, 4697-4704.	5.2	18
83	Suppression of chromophore coupling in thin films by chemical substitution of a perylene tetracarboxylic acid diimide. Synthetic Metals, 2000, 109, 151-155.	3.9	18
84	Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films. Physical Chemistry Chemical Physics, 2007, 9, 1843.	2.8	18
85	Pulsed electrodeposition of porous ZnO on Ag-coated polyamide filaments. Physical Chemistry Chemical Physics, 2009, 11, 3313.	2.8	18
86	Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous ZnO films. Journal of Porphyrins and Phthalocyanines, 2010, 14, 985-992.	0.8	18
87	Title is missing!. Die Makromolekulare Chemie, 1988, 189, 2419-2423.	1.1	17
88	Efficient Sensitization of Mesoporous Electrodeposited Zinc Oxide by cis-Bis(isothiocyanato)bis(2,2[sup Ê1]-bipyridyl-4,4[sup Ê1]-dicarboxylato)-Ruthenium(II). Journal of the Electrochemical Society, 2006, 153, A699.	2.9	17
89	Switching of the Rate-limiting Step in the Electrochromic Reduction of Fluorinated Phthalocyanine Thin Films by Decreased Intermolecular Coupling. Electrochimica Acta, 2015, 157, 232-244.	5.2	17
90	Controlled Electrodeposition of Zinc Oxide on Conductive Meshes and Foams Enabling Its Use as Secondary Anode. Journal of the Electrochemical Society, 2018, 165, D461-D466.	2.9	17

#	Article	IF	CITATIONS
91	Textileâ€Compatible Substrate Electrodes with Electrodeposited ZnO—A New Pathway to Textileâ€Based Photovoltaics. ChemPhysChem, 2010, 11, 783-788.	2.1	16
92	Stable Sensitization of ZnO by Improved Anchoring of Indoline Dyes. ChemPhysChem, 2012, 13, 2893-2897.	2.1	16
93	Effect of morphology and surface treatment on the performance of ZnO nanorod-based dye-sensitized solar cells. Journal of Alloys and Compounds, 2019, 798, 249-256.	5.5	16
94	Hybrid thin films of ZnO with porphyrins and phthalocyanines prepared by one-step electrodeposition. Journal of Porphyrins and Phthalocyanines, 2004, 08, 1366-1375.	0.8	15
95	(Photoâ€)conduction measurements during the growth of evaporated bulk heterojunctions of a subphthalocyanine donor and a perfluorinated phthalocyanine acceptor. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2723-2730.	1.8	15
96	Structures and Redox Characteristics of Electron-Deficient Vanadyl Phthalocyanines. Inorganic Chemistry, 2011, 50, 4086-4091.	4.0	15
97	Design Strategy for Zinc Anodes with Enhanced Utilization and Retention: Electrodeposited Zinc Oxide on Carbon Mesh Protected by Ionomeric Layers. ACS Applied Energy Materials, 0, , .	5.1	15
98	Optimization of the Substitution Pattern of 1,3â€Disubstituted Imidazo[1,5â€ <i>a</i>]Pyridines and â€Quinolines for Electroâ€Optical Applications. Physica Status Solidi (B): Basic Research, 2020, 257, 1900677.	1.5	15
99	Determination of the anisotropic optical properties for perfluorinated vanadyl phthalocyanine thin films. Journal of Materials Research, 2004, 19, 2008-2013.	2.6	14
100	<i>l–V</i> hysteresis of methylammonium lead halide perovskite films on microstructured electrode arrays: Dependence on preparation route and voltage scale. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 38-45.	1.8	14
101	Effect of Alkyl Side Chain Length on Intra- and Intermolecular Interactions of Terthiophene–Isoindigo Copolymers. Journal of Physical Chemistry C, 2020, 124, 9644-9655.	3.1	14
102	Influence of polymer matrices on the photoelectrochemical properties of a molecular semiconductor by structural modification. Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 267-279.	0.6	13
103	Electrospun antimony doped tin oxide (ATO) nanofibers as a versatile conducting matrix. Chemical Communications, 2011, 47, 12119.	4.1	13
104	Influence of indoline dye and coadsorbate molecules on photovoltaic performance and recombination in dye-sensitized solar cells based on electrodeposited ZnO. Journal of Electroanalytical Chemistry, 2013, 709, 10-18.	3.8	13
105	Ultrafast Chargeâ€Transfer Reactions of Indoline Dyes with Anchoring Alkyl Chains of Varying Length in Mesoporous ZnO Solar Cells. ChemPhysChem, 2015, 16, 943-948.	2.1	13
106	Dye-sensitized solar cells with electrodeposited ZnO and Co(bpy)3 redox electrolyte: Investigation of mass transport in the electrolyte and interfacial charge recombination. Electrochimica Acta, 2017, 258, 591-598.	5.2	13
107	Facile low-temperature synthesis of nickel oxide by an internal combustion reaction for applications in electrochromic devices. Journal of Materials Science, 2020, 55, 14401-14414.	3.7	13
108	Photovoltaic junction properties of ultrathin films of phthalocyaninatooxovanadium (PcVO) on H-terminated n-Si(111). Thin Solid Films, 2001, 396, 109-118.	1.8	12

#	Article	IF	CITATIONS
109	Self-organization of crystalline domains in originally amorphous perylene diimide films. Journal Physics D: Applied Physics, 2008, 41, 105112.	2.8	12
110	Consequences of changes in the ZnO trap distribution on the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 16159-16168.	2.8	12
111	Electrochemical CO2 reduction catalysed by cobalt octacyanophthalocyanine and its mechanism. Journal of Porphyrins and Phthalocyanines, 1997, 1, 315-321.	0.8	12
112	Influence of Electron-withdrawing Substituents on Photoelectrochemical Surface Phenomena at Phthalocyanine Thin Film Electrodes. Journal of Porphyrins and Phthalocyanines, 1999, 03, 444-452.	0.8	11
113	Strategy for preparation of transparent organic thin film transistors with PEDOT:PSS electrodes and a polymeric gate dielectric. Materials Science in Semiconductor Processing, 2015, 40, 772-776.	4.0	11
114	Characterization of molecular overlayers on metal surface in dynamic equilibrium by scanning tunneling microscope. Thin Solid Films, 2001, 393, 325-328.	1.8	10
115	Sensitization of thin-film-silicon by a phthalocyanine as strong organic absorber. Organic Electronics, 2006, 7, 363-368.	2.6	10
116	Ultrafast excited state dynamics of a bithiopheneâ€isoindigo copolymer obtained by direct arylation polycondensation and its application in indium tin oxideâ€free solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1475-1483.	2.1	10
117	Ultrafast Charge Dynamics in Mixed Cation – Mixed Halide Perovskite Thin Films. ChemPhysChem, 2018, 19, 3010-3017.	2.1	10
118	Influence of Mg-doping on the characteristics of ZnO photoanodes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2021, 23, 8393-8402.	2.8	10
119	Electrochromic redox reactions of vapour-deposited thin films of tetrapyridotetraazaporphyrinatozinc(II). Journal of Porphyrins and Phthalocyanines, 2000, 04, 112-122.	0.8	9
120	Influence of Mn as a redox-active central metal on the electrical conduction behaviour of phthalocyanine thin films. Journal of Porphyrins and Phthalocyanines, 2000, 04, 23-30.	0.8	9
121	Preparation and Characterization of Electrodeposited ZnO on Microstructured Electrode Arrays. Journal of the Electrochemical Society, 2012, 159, D717-D723.	2.9	9
122	Efficient Electron Collection by Electrodeposited ZnO in Dye-Sensitized Solar Cells with TEMPO ^{+/0} as the Redox Mediator. Journal of Physical Chemistry C, 2019, 123, 22074-22082.	3.1	9
123	Synthesis, optical and theoretical characterization of heteroleptic Iridium(III) Imidazo[1,5-a]pyridine and -quinoline complexes. Dyes and Pigments, 2020, 180, 108512.	3.7	9
124	Redox reactions of acetone and ethanol with the surface of N,N′-dimethylperylene-3,4,9,10-biscarboximide (MePTCDI) thin films. Physical Chemistry Chemical Physics, 1999, 1, 1801-1806.	2.8	8
125	Interfacial trap states in junctions of molecular semiconductors. Chemical Physics, 2002, 285, 103-112.	1.9	8
126	Organic–inorganic hybrid composites for photovoltaics: Organic guest molecules embedded in μc-Si and ZnSe host matrices. Renewable Energy, 2008, 33, 262-266.	8.9	8

#	Article	IF	CITATIONS
127	Intralayer vs. interlayer electronic coupling in perylene imide thin films. Organic Electronics, 2013, 14, 2833-2839.	2.6	8
128	Interplay of Different Reaction Pathways in the Pulsed Galvanostatic Deposition of Zinc Oxide. Electrochimica Acta, 2015, 169, 367-375.	5.2	8
129	Influence of counter-anions during electrochemical deposition of ZnO on the charge transport dynamics in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 1883-1890.	2.8	8
130	Freezing the polarization of CH3NH3PbI3 and CH3NH3PbI3-xClx perovskite films. Materials Today Chemistry, 2017, 4, 97-105.	3.5	8
131	Direct Observation of Charge Injection From CH ₃ NH ₃ Pbl _{3â^{°°}<i>x</i>} Cl <i>_x</i> to Organic Semiconductors Monitored With subâ€ps Transient Absorption Spectroscopy. Physica Status Solidi (B): Basic Research 2019, 256, 1800265	1.5	8
132	Intermolecular Interactions and Electrical Properties in Thin Films of Tetrapyridotetraazaporphyrinatozinc(II). Journal of Porphyrins and Phthalocyanines, 1999, 03, 611-619.	0.8	7
133	Diffusion-controlled electrochemical growth of porous zinc oxide on microstructured electrode band arrays. Journal of Applied Electrochemistry, 2015, 45, 105-113.	2.9	7
134	Migration Characteristics under Long-term Storage and a Combination of UV and Heat Exposure of Poly(Amide)/Poly(Ethylene) Composite Films for Food Packaging. Packaging Technology and Science, 2016, 29, 289-302.	2.8	7
135	Identification of different pathways of electron injection in dye-sensitised solar cells of electrodeposited ZnO using an indoline sensitiser. Physical Chemistry Chemical Physics, 2016, 18, 8938-8944.	2.8	7
136	Control of Excited‧tate Conformations in B,Nâ€Acenes. Angewandte Chemie - International Edition, 2019, 58, 4259-4263.	13.8	7
137	The influence of intermolecular coupling on electron and ion transport in differently substituted phthalocyanine thin films as electrochromic materials: a chemistry application of the Goldilocks principle. Physical Chemistry Chemical Physics, 2020, 22, 7699-7709.	2.8	7
138	The Combination of Phthalocyanines and Polymers for Electrochemically or Photoelectrochemically Induced Processes. Journal of Macromolecular Science Part A, Chemistry, 1990, 27, 1239-1259.	0.3	6
139	Electrochemically self-assembled mesoporous dye-modified zinc oxide thin films. Studies in Surface Science and Catalysis, 2005, , 315-320.	1.5	6
140	Thin insulating polymer films as dielectric layers for phthalocyanine-based organic field effect transistors. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1179-1189.	0.8	6
141	Electrochemical and electroless deposition of porous zinc oxide on aluminium. Electrochimica Acta, 2014, 128, 360-367.	5.2	6
142	Polymeric phthalocyanine sheets as electrocatalytic electrodes for water-oxidation. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1166-1172.	0.8	6
143	Metal Complexes as Redox Shuttles in Dye-Sensitized Solar Cells Based on Electrodeposited ZnO: Tuning Recombination Kinetics and Conduction Band Energy. Journal of the Electrochemical Society, 2018, 165, H3115-H3121.	2.9	6
144	Ordered Thin Films of Perylenetetracarboxylicdianhydride-bisimide and bis-(N-alkyl)-Quinacridone Dyes. Materials Research Society Symposia Proceedings, 2000, 620, 1.	0.1	5

#	Article	IF	CITATIONS
145	Phthalocyanines incorporated into hot wire-CVD grown silicon. Thin Solid Films, 2006, 511-512, 172-176.	1.8	5
146	Structure and morphology in thin films of perfluorinated copper phthalocyanine grown on alkali halide surfaces (001). Journal of Porphyrins and Phthalocyanines, 2012, 16, 977-984.	0.8	5
147	Control of Excitedâ€State Conformations in B,Nâ€Acenes. Angewandte Chemie, 2019, 131, 4303-4307.	2.0	5
148	Tuning the optical properties of 2D monolayer silver-bismuth bromide double perovskite by halide substitution. Nanotechnology, 2022, 33, 215706.	2.6	5
149	Influence of molecular adsorbates on the structure of electrodeposited nanocrystalline ZnO. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2382-2387.	1.8	4
150	Doping in mixed films of differently substituted phthalocyanines measured inâ€situ during film growth. Physica Status Solidi - Rapid Research Letters, 2012, 6, 214-216.	2.4	4
151	Use of Kelvin probe force microscopy to achieve a locally and time-resolved analysis of the photovoltage generated in dye-sensitized ZnO electrodes. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1960-1965.	1.8	4
152	Adjusting Porosity and Pore Radius of Electrodeposited ZnO Photoanodes. Journal of the Electrochemical Society, 2019, 166, B3040-B3046.	2.9	4
153	Synthesis and characterization of methoxy- or cyano-substituted thiophene/phenylene co-oligomers for lasing application. RSC Advances, 2020, 10, 24057-24062.	3.6	4
154	Enhancing the Spectroelectrochemical Performance of WO3 Films by Use of Structure-Directing Agents during Film Growth. Applied Sciences (Switzerland), 2022, 12, 2327.	2.5	4
155	Electrochemically self-assembled ZnO/dye electrodes: preparation and time-resolved photoelectrochemical measurements. , 2002, 4807, 113.		3
156	Charge transfer at organic-inorganic interfaces—Indoline layers on semiconductor substrates. Journal of Applied Physics, 2016, 120, .	2.5	3
157	Optical determination of charge transfer times from indoline dyes to ZnO in solid state dye-sensitized solar cells. AIP Advances, 2018, 8, 055218.	1.3	3
158	Influence of Crystal Facets (102) or (100) on Photoelectrochemical Kinetics of ZnO Nanocrystals in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2019, 166, B3290-B3294.	2.9	3
159	Electron and Ion Transport in Mixed Electrochromic Thin Films of Perfluorinated Phthalocyanines. Electrochimica Acta, 2021, 377, 138065.	5.2	3
160	Investigation of Sputterâ€Đeposited Thin Films of Lithium Phosphorous Sulfuric Oxynitride (LiPSON) as Solid Electrolyte for Electrochromic Devices. Physica Status Solidi (B): Basic Research, 2021, 258, 2100032.	1.5	3
161	Growth of organic n-conductors on thin polymer films for use in organic field effect transistors. Macromolecular Symposia, 2004, 212, 299-306.	0.7	2
162	Preparation and characterization of mixed formamidinium lead iodide/methyl ammonium lead bromide layers. Monatshefte FÃ1⁄4r Chemie, 2017, 148, 827-833.	1.8	2

#	Article	IF	CITATIONS
163	Contact formation of C60 to thin films of formamidinium tin iodide. Journal of Materials Research, 2020, 35, 2897-2904.	2.6	2
164	Electrochemical Self-Assembly of Nanoporous ZnO/Eosin Y Thin Films and Their Sensitized Photoelectrochemical Performance. , 2000, 12, 1214.		2
165	Photoelectrochemical Reactions at Phthalocyanine Electrodes. , 2006, , 467-515.		2
166	The Combination of Phthalocyanines and Polymers For Electrochemically Or Photoelectrochemically Induced Processes. Journal of Macromolecular Science - Pure and Applied Chemistry, 1990, 27, 1239-1259.	2.2	2
167	<title>Design of domain size and molecular interactions in organic semiconductors to control the emission yield of thin films</title> . , 2001, 4456, 48.		1
168	Nanoparticulate Dye-Semiconductor Hybrid Materials Formed by Electrochemical Self-Assembly as Electrodes in Photoelectrochemical Cells. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 518-530.	1.5	1
169	Charge separation in organic semiconductor blends studied by electrical <i>in situ</i> characterization during film growth. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 323-326.	1.8	1
170	Ultrafast Charge-Transfer Reactions of Indoline Dyes with Anchoring Alkyl Chains of Varying Length in Mesoporous ZnO Solar Cells. ChemPhysChem, 2015, 16, 893-893.	2.1	1
171	Hybrid Organic–Inorganic Solar Cells with Electrodeposited Al-Doped Zinc Oxide. Journal of Nanoscience and Nanotechnology, 2016, 16, 3402-3406.	0.9	1
172	Electrochemical Impedance Spectroscopy Analysis on Dye-sensitized Solar Cells Employing (102) and (100) Dominant ZnO Nanocrystals. ECS Transactions, 2018, 88, 289-299.	0.5	1
173	Specific migration of caprolactam and infrared characteristics of a polyamide/polyethylene composite film for food packaging under conditions of longâ€ŧerm storage before use. Packaging Technology and Science, 2020, 33, 501-514.	2.8	1
174	New π-stacking motifs for molecular semiconducting materials: bis(bis(8-quinolinyl)amide)metal(<scp>ii</scp>) complexes of Cr, Mn, Fe, and Zn. Materials Advances, 2021, 2, 2347-2357.	5.4	1
175	Role of Interfaces and Contact Formation for the Application of Leadâ€Free Perovskite Materials in Photovoltaic Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100369.	2.4	1
176	Electrochromic redox reactions of vapourâ€deposited thin films of tetrapyridotetraazaporphyrinatozinc(II). Journal of Porphyrins and Phthalocyanines, 2000, 4, 112-122.	0.8	1
177	<title>Time-resolved photoelectrochemical measurements and photovoltaic efficiency of electrochemically self-assembled ZnO-dye electrodes</title> . , 2002, 4465, 76.		Ο
178	ICPP-4. Nachrichten Aus Der Chemie, 2006, 54, 1029-1029.	0.0	0
179	Self Organization in Thin Films of a Substituted Perylene Imide with a Twisted Aromatic Core. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
180	A Classic Molecular Semiconductor Revisited: New Aspects of Growth Mode and Conduction Characteristics in Thin Films of Phthalocyaninatozinc (PcZn). Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0

#	Article	IF	CITATIONS
181	Modification of ZnO Layers by Molecular Adsorbates During Electrochemical Deposition. Materials Research Society Symposia Proceedings, 2006, 957, 1.	0.1	0
182	Novel Nanostructured Photoelectrodes - Electrodeposition of Metal Oxides onto Transparent Conducting Oxide Nanofibers. Materials Research Society Symposia Proceedings, 2009, 1211, 1.	0.1	0
183	Fluorinated Phthalocyanines as Molecular Semiconductor Thin Films. , 0, , 35-60.		Ο
184	Influence of an Applied Electric Field on the Conduction Characteristics of a Bithienyl-Capped Biphenylene and Biphenyl-Capped Oligothiophenes in Organic Field-Effect Transistor Structures. Materials Research Society Symposia Proceedings, 2012, 1402, 72.	0.1	0
185	Intensity-Modulated Photovoltage Spectroscopy at Evaporated Bulk Heterojunctions of PcCu and C60 to Determine the Average Effective Lifetime of Charge Carriers. Materials Research Society Symposia Proceedings, 2013, 1493, 303-308.	0.1	0
186	Photoinduced charge transfer between Indoline D149 and porous ZnO detected in transient absorption. EPJ Web of Conferences, 2013, 41, 04011.	0.3	0
187	Organic Molecular Beam Epitaxy: Ordered Organic Thin Films and Organic—Organic Heterojunctions. , 0, , 5072-5086.		0
188	Characterization of porphyrin nanorods on fluorine doped tin oxide glass sheet. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1147-1158.	0.8	0
189	Mixed Ionic and Electronic Conduction in Appropriately Substituted Phthalocyanine Thin Films for Reversible and Fast Electrochromic Switching. ECS Meeting Abstracts, 2021, MA2021-01, 789-789.	0.0	0
190	Molecularly Modified Organic Semiconducting Properties of Phthalocyanine Derivatives. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 1410-1413.	0.2	0
191	Photoactive donor-acceptor thin films as prospective materials for evaporated bulk heterojunctions of molecular semiconductors. , 2008, , .		0
192	Ultrafast Photodynamics of Indoline D149-sensitized ZnO solar cells. , 2012, , .		0
193	Photoelectrochemical Reactions at Phthalocyanine Electrodes. , 2016, , 263-314.		0
194	Establishing Distinct Charge Transfer Channels in Indoline Dye Sensitized Electrodeposited ZnO Solar Cells. , 2016, , .		0
195	Time- and Frequency-Resolved Photoelectrochemical Measurements on Dye Sensitized Solar Cells Employing (102) and (100) Dominated ZnO Nanocrystals. ECS Meeting Abstracts, 2018, , .	0.0	0
196	(Keynote) Electrochemical Reactions at Semiconductor Thin Films As Part of Solar Energy Conversion or Advanced Light Management. ECS Meeting Abstracts, 2018, , .	0.0	0
197	Mixed Ionic and Electronic Conduction in Appropriately Substituted Phthalocyanine Thin Films Allows Fast and Reversible Electrochromic Switching. ECS Meeting Abstracts, 2020, MA2020-01, 933-933.	0.0	0
198	Modelling of Diffusion-Limited Growth in the Electrodeposition of Porous ZnO. ECS Meeting Abstracts, 2020, MA2020-01, 1209-1209.	0.0	0

#	Article	IF	CITATIONS
199	Energy Level Alignment of Formamidinium Tin Iodide in Contact with Organic Hole Transport Materials. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100698.	1.8	0