Aghafakhr Mirlohi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marker-trait association analysis for drought tolerance in smooth bromegrass. BMC Plant Biology, 2021, 21, 116.	3.6	1
2	Emmer wheat as a source for trait improvement in durum wheat: a study of general and specific combining ability. Euphytica, 2021, 217, 1.	1.2	11
3	Yield stability of contrasting orchardgrass (Dactylis glomerata L.) genotypes over the years and water regimes. Euphytica, 2021, 217, 1.	1.2	1
4	Genetic characterization of a diversity panel, selected from IPK linseed (Linum usitatissimum) world collection. Plant Breeding, 2021, 140, 919.	1.9	6
5	Root characteristics of an elite spring wheat panel under contrasting water treatments and their genome-wide association study. Rhizosphere, 2021, 19, 100413.	3.0	4
6	Genetic variability of seed yield and oil nutritional attributes in linseed dominated by biennial variation. Crop and Pasture Science, 2021, 72, 443.	1.5	1
7	Multi environmental evaluation of persistence and drought tolerance in smooth bromegrass (Bromus inermis): genetic analysis for stability in combining ability. Crop and Pasture Science, 2021, 72, 565.	1.5	3
8	Genetic interaction and inheritance of important traits in durum (Triticum turgidum ssp.) Tj ETQq0 0 0 rgBT /Ov Pasture Science, 2021, 72, 874.	erlock 10 ⁻ 1.5	Tf 50 467 Td 0
9	Water stress intensified the relation of seed color with lignan content and seed yield components in flax (Linum usitatissimum L.). Scientific Reports, 2021, 11, 23958.	3.3	7
10	Evolution of Carthamus species revealed through sequence analyses of the fad2 gene family. Physiology and Molecular Biology of Plants, 2020, 26, 419-432.	3.1	3
11	Influence of water deficit and defoliation managements on postâ€drought recovery and persistence of smooth bromegrass. Agronomy Journal, 2020, 112, 4578-4586.	1.8	6
12	A genetic view on the role of prolonged drought stress and mating systems on post-drought recovery, persistence and drought memory of orchardgrass (Dactylis glomerata L.). Euphytica, 2020, 216, 1.	1.2	4
13	Seed set in inter specific crosses of male sterile Mentha spicata with Mentha longifolia. Euphytica, 2020, 216, 1.	1.2	6
14	Comparative physiological attributes of cultivated and wild relatives of barley in response to different water environments. Agronomy Journal, 2020, 112, 36-43.	1.8	4
15	The Use of Wild Relatives of Safflower to Increase Genetic Diversity for Fatty Acid Composition and Drought Tolerance. Crop Science, 2019, 59, 2109-2118.	1.8	3
16	Growth traits associated with drought survival, recovery and persistence of cocksfoot (Dactylis) Tj ETQq0 0 0 rg	BT /Qverlc	ock 10 Tf 50 1
	Inheritance and combining ability of persistence and drought recovery in smooth bromegrass		

1/	(Bromus inermis L.). Euphytica, 2019, 215, 1.	1.2	ð
18	Genotype selection for physiological responses of drought tolerance using molecular markers in polycross hybrids of orchardgrass. Plant Breeding, 2019, 138, 937-946.	1.9	3

Aghafakhr Mirlohi

#	Article	IF	CITATIONS
19	Evaluating Selection Methods for Carthamus Interspecific Crosses under Different Water Conditions. Agronomy Journal, 2019, 111, 1592-1603.	1.8	1
20	Genetic and Physiological Aspects of Drought Tolerance in Smooth Bromegrass. Crop Science, 2019, 59, 2601-2607.	1.8	7
21	Genetic potential to improve seed and forage yield simultaneously in smooth bromegrass under water deficit conditions. Euphytica, 2018, 214, 1.	1.2	4
22	Evaluation of wild barley species as possible sources of drought tolerance for arid environments. Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 209-217.	0.8	6
23	Proteomics analysis of <i>Medicago truncatula</i> response to infection by the phytopathogenic bacterium <i>Ralstonia solanacearum</i> points to jasmonate and salicylate defence pathways. Cellular Microbiology, 2018, 20, e12796.	2.1	20
24	Genetic variation in an orchardgrass population promises successful direct or indirect selection of superior drought tolerant genotypes. Plant Breeding, 2018, 137, 928-935.	1.9	5
25	Marker-based parental selection to improve performance of orchadgrass polycross populations under water deficit environments. Euphytica, 2018, 214, 1.	1.2	12
26	Genetics of post-drought recovery, persistence and summer dormancy in orchardgrass (Dactylis) Tj ETQq0 0 0 r	gBT ₁ /Overl	ock_10 Tf 50 4
27	Association analysis for seed yield, forage yield and traits related to drought tolerance in orchardgrass (Dactylis glomerata). Crop and Pasture Science, 2018, 69, 1150.	1.5	7
28	Physiological responses of drought tolerance in orchardgrass (Dactylis glomerata) in association with persistence and summer dormancy. Crop and Pasture Science, 2018, 69, 515.	1.5	13
29	Genetic analysis of seedâ€related traits in smooth bromegrass (<i>Bromus inermis</i>) under wellâ€watered and waterâ€stressed conditions. Grass and Forage Science, 2017, 72, 163-173.	2.9	1
30	Productivity, persistence and traits related to drought tolerance in smooth bromegrass. Plant Breeding, 2017, 136, 270-278.	1.9	17
31	Simultaneous selection for seed and forage production in cocksfoot (<i>Dactylis glomerata</i>): application of drought tolerance and susceptibility indices. Grass and Forage Science, 2017, 72, 441-453.	2.9	10
32	Physiological and Tolerance Indices Useful for Drought Tolerance Selection in Smooth Bromegrass. Crop Science, 2017, 57, 282-289.	1.8	16
33	Effects of Drought Stress on Oil Characteristics of <i>Carthamus</i> Species. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 247-256.	1.9	25
34	Epichloë endophyte and plant genotype determine seed production through self-pollination in tall fescue. Euphytica, 2017, 213, 1.	1.2	7
35	Root characteristic system improves drought tolerance in orchardgrass. Plant Breeding, 2017, 136, 775-783.	1.9	5
36	Analysis of seed production and its association with forage production and agronomic traits in orchardgrass (Dactylis glomerata) under different moisture conditions. Crop and Pasture Science, 2017, 68, 657.	1.5	11

Aghafakhr Mirlohi

#	Article	IF	CITATIONS
37	Genetic Analysis of Stability in Poly rossed Populations of Orchardgrass. Crop Science, 2017, 57, 2828-2836.	1.8	4
38	Selection for productivity, persistence and drought tolerance in orchardgrass. Euphytica, 2016, 212, 111-130.	1.2	9
39	Integrating parametric and non-parametric measures to investigate genotypeÂ×Âenvironment interactions in tall fescue. Euphytica, 2016, 208, 583-596.	1.2	18
40	Assessment of the Genetic Diversity Among Potato Cultivars from Different Geographical Areas Using the Genomic and EST Microsatellites. Iranian Journal of Biotechnology, 2016, 14, 270-277.	0.3	15
41	Response to Drought Stress in Sainfoin: Within and Among Ecotype Variation. Crop Science, 2015, 55, 1868-1880.	1.8	8
42	Response of Cultivated and Wild Barley Germplasm to Drought Stress at Different Developmental Stages. Crop Science, 2015, 55, 2668-2681.	1.8	20
43	Assessment of Drought Tolerance in Sainfoin: Physiological and Drought Tolerance Indices. Agronomy Journal, 2015, 107, 1771-1781.	1.8	13
44	Halfâ€5ib Matting and Genetic Analysis of Agronomic, Morphological, and Physiological Traits in Sainfoin under Nonstressed versus Waterâ€Deficit Conditions. Crop Science, 2015, 55, 123-135.	1.8	11
45	Polycross Genetic Analysis of Forage Yield and Related Traits in <i>Dactylis glomerata</i> . Crop Science, 2015, 55, 203-210.	1.8	19
46	Genetic analysis of seed related traits in Orchardgrass (Dactylis glomerata) under normal and drought stress conditions. Euphytica, 2015, 203, 409-420.	1.2	23
47	Application of half-sib mating for genetic analysis of forage yield and related traits in Bromus inermis. Euphytica, 2014, 196, 25-34.	1.2	29
48	Cytogenetic and crossability studies in hulled wheat collected from Central Zagros in Iran. Plant Systematics and Evolution, 2014, 300, 1895-1901.	0.9	4
49	Genotypic variation and selection of traits related to forage yield in tall fescue under irrigated and drought stress environments. Grass and Forage Science, 2013, 68, 59-71.	2.9	41
50	Physiological traits related to drought tolerance in tall fescue. Euphytica, 2013, 190, 401-414.	1.2	52
51	Mapping Quantitative Trait Loci for Powdery Mildew Resistance in Flax (<i>Linum usitatissimum</i> L.). Crop Science, 2013, 53, 2462-2472.	1.8	34
52	Genetic and Genotype × Environment Interaction Analysis for Agronomical and Some Morphological Traits in Halfâ€ S ib Families of Tall Fescue. Crop Science, 2013, 53, 411-421.	1.8	34
53	Reaction to powdery mildew fungus, Blumeria graminis in endophyte-infected and endophyte-free tall and meadow fescues. Australasian Plant Pathology, 2012, 41, 565-572.	1.0	29
54	Drought-tolerance indices in a tall fescue population and its polycross progenies. Crop and Pasture Science, 2012, 63, 360.	1.5	24

#	Article	IF	CITATIONS
55	Improved polycross breeding of tall fescue through markerâ€based parental selection. Plant Breeding, 2011, 130, 701-707.	1.9	17
56	Study of genetic variation in sesame (Sesamum indicum L.) using agro-morphological traits and ISSR markers. Russian Journal of Genetics, 2011, 47, 314-321.	0.6	28
57	<i>Neotyphodium</i> endophytes trigger salt resistance in tall and meadow fescues. Journal of Plant Nutrition and Soil Science, 2010, 173, 952-957.	1.9	80

58 Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca) Tj ETQq0 0 0 rgB1.2 Overlock 10 Tf 50

59	Genetic variation among populations of wild safflower, Carthamus oxyacanthus analyzed by agro-morphological traits and ISSR markers. Genetic Resources and Crop Evolution, 2009, 56, 1057-1064.	1.6	20
60	Effects of endophytic fungi on some drought tolerance mechanisms of tall fescue in a hydroponics culture. Russian Journal of Plant Physiology, 2009, 56, 510-516.	1.1	64
61	Barley Stem Rust Resistance Genes: Structure and Function. Plant Genome, 2009, 2, .	2.8	30
62	Oil Content and Fatty Acid Composition in Seeds of Three Safflower Species. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 717-721.	1.9	75
63	Allele Sequencing of the Barley Stem Rust Resistance Gene <i>Rpg1</i> Identifies Regions Relevant to Disease Resistance. Phytopathology, 2008, 98, 910-918.	2.2	18
64	Widespread occurrence ofNeotyphodium-like endophyte in populations ofBromus tomentellusBoiss. in Iran. FEMS Microbiology Letters, 2006, 256, 126-131.	1.8	10
65	Exploring the breeding potential of Iranian emmer wheats to increase durum wheat tolerance to drought. Plant Genetic Resources: Characterisation and Utilisation, 0, , 1-12.	0.8	2
66	Generation means analysis of traits related to lodging using two crosses of durum × emmer wheat. Genetic Resources and Crop Evolution, 0, , 1.	1.6	0
67	Drought tolerance and stability of native and foreign tall fescue genotypes: Comparison of AMMI and GGE biplot analyses. Agronomy Journal, 0, , .	1.8	0