Dr Syed Sabir Hussain Bukhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045362/publications.pdf

Version: 2024-02-01

794594 687363 62 603 13 19 citations h-index g-index papers 62 62 62 256 docs citations times ranked all docs citing authors

#	Article	IF	CITATIONS
1	Experimental Determination of Equivalent Iron Loss Resistance for Prediction of Iron Losses in a Switched Reluctance Machine. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	11
2	Effect of the magnet shape on the performance of coreless axial flux permanent magnet synchronous generator. Electrical Engineering, 2022, 104, 959-968.	2.0	9
3	Novel Hybrid Consequent-Pole Brushless Wound Rotor Synchronous Machine for Improving Torque Characteristics. IEEE Access, 2022, 10, 35953-35964.	4.2	1
4	Sustainable Solutions for Advanced Energy Management System of Campus Microgrids: Model Opportunities and Future Challenges. Sensors, 2022, 22, 2345.	3.8	40
5	Mitigation of Circulating Bearing Current in Induction Motor Drive Using Modified ANN Based MRAS for Traction Application. Mathematics, 2022, 10, 1220.	2.2	4
6	Novel Passive Islanding Detection Technique by Monitoring Reverse Power at PCC. International Transactions on Electrical Energy Systems, 2022, 2022, 1-10.	1.9	2
7	Minimization of Torque Ripples in Multi-Stack Slotted Stator Axial-Flux Synchronous Machine by Modifying Magnet Shape. Mathematics, 2022, 10, 1653.	2.2	3
8	Analysis and Design of a Thomson Coil Actuator System for an HVDC Circuit Breaker. IEEE Access, 2022, 10, 58354-58359.	4.2	4
9	Investigation of sinusoidal shaped rotor to reduce torque ripple in axial flux permanent magnet machine. International Journal of Ambient Energy, 2022, 43, 8113-8122.	2.5	4
10	Brushless Wound Rotor Synchronous Machine Based on a Consequent-Pole Rotor Structure with Better Torque Attributes. International Transactions on Electrical Energy Systems, 2022, 2022, 1-12.	1.9	1
11	A New Small-Scale Self-Excited Wound Rotor Synchronous Motor Topology. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	19
12	Performance Improvement of Dual Stator Axial Flux Spoke Type Permanent Magnet Vernier Machine. IEEE Access, 2021, 9, 64179-64188.	4.2	20
13	Reduction of Torque Ripples in Multi-Stack Slotless Axial Flux Machine by Using Right Angled Trapezoidal Permanent Magnet. IEEE Access, 2021, 9, 22760-22773.	4.2	12
14	Efficient Real-Time Controller Design Test Bench for Power Converter Applications. IEEE Access, 2021, 9, 118880-118892.	4.2	11
15	Modified Nearest Level Modulation for Full-Bridge Based HVDC MMC in Real-Time Hardware-in-Loop Setup. IEEE Access, 2021, 9, 114998-115005.	4.2	10
16	Simplified Brushless Wound Field Synchronous Machine Topology Based on a Three-Phase Rectifier. IEEE Access, 2021, 9, 8637-8648.	4.2	10
17	Utilization of reluctance torque for improvement of the starting and average torques of a brushless wound field synchronous machine. Electrical Engineering, 2021, 103, 2327-2333.	2.0	8
18	Brushless <scp>fieldâ€excitation</scp> method for <scp>woundâ€rotor</scp> synchronous machines. International Transactions on Electrical Energy Systems, 2021, 31, e12961.	1.9	6

#	Article	IF	CITATIONS
19	Analysis and Optimization of Axial Flux Permanent Magnet Machine for Cogging Torque Reduction. Mathematics, 2021, 9, 1738.	2.2	10
20	High-Efficient Brushless Wound Rotor Synchronous Machine Topology Based on Sub-Harmonic Field-Excitation Technique. Energies, 2021, 14, 4427.	3.1	11
21	Novel Single Inverter-Controlled Brushless Wound Field Synchronous Machine Topology. Mathematics, 2021, 9, 1739.	2.2	6
22	Adaptive Data Length Method for GPS Signal Acquisition in Weak to Strong Fading Conditions. Electronics (Switzerland), 2021, 10, 1735.	3.1	6
23	High-Harmonic Injection-Based Brushless Wound Field Synchronous Machine Topology. Mathematics, 2021, 9, 1721.	2.2	2
24	Recent Challenges and Methodologies in Smart Grid Demand Side Management: State-of-the-Art Literature Review. Mathematical Problems in Engineering, 2021, 2021, 1-16.	1.1	59
25	Reconfigurable Power Quality Analyzer Applied to Hardware-in-Loop Test Bench. Energies, 2021, 14, 5134.	3.1	5
26	Performance Improvement of Multi-Rotor Axial Flux Vernier Permanent Magnet Machine by Permanent Magnet Shaping. IEEE Access, 2021, 9, 143188-143197.	4.2	10
27	Cost-Effective Scheme for a Brushless Wound Rotor Synchronous Machine. World Electric Vehicle Journal, 2021, 12, 194.	3.0	4
28	Islanding Detection Strategy for Wind Farm Based on Performance Analysis of Passive Indices Having Negligible NDZ. Applied Sciences (Switzerland), 2021, 11, 9989.	2.5	4
29	Design of a High Torque Density Interior Permanent Magnet Synchronous Machine with improved Efficiency using Amorphous Magnetic Material. , 2021, , .		2
30	Reduction of Cogging Torque in AFPM Machine Using Elliptical-Trapezoidal-Shaped Permanent Magnet. Applied Computational Electromagnetics Society Journal, 2021, 36, 1090-1098.	0.4	4
31	Brushless wound rotor synchronous machine with third-harmonic field excitation. Electrical Engineering, 2020, 102, 259-265.	2.0	13
32	Brushless Field Excitation Scheme for Wound Field Synchronous Machines. Applied Sciences (Switzerland), 2020, 10, 5866.	2.5	5
33	Real-Time Controller Design Test Bench for High-Voltage Direct Current Modular Multilevel Converters. Applied Sciences (Switzerland), 2020, 10, 6004.	2.5	11
34	Cost-Effective Single-Inverter-Controlled Brushless Technique for Wound Rotor Synchronous Machines. IEEE Access, 2020, 8, 204804-204815.	4.2	5
35	Multifunctional Grid-Connected Voltage Source Inverter to Drive Induction Motor Operating With High-Inertia Load. IEEE Access, 2020, 8, 196765-196774.	4.2	3
36	Power Quality Improvement in HVDC MMC With Modified Nearest Level Control in Real-Time HIL Based Setup. IEEE Access, 2020, 8, 221712-221719.	4.2	17

#	Article	IF	CITATIONS
37	Dual-Inverter-Controlled Brushless Operation of Wound Rotor Synchronous Machines Based on an Open-Winding Pattern. Energies, 2020, 13, 2205.	3.1	16
38	A Single-Phase Line-Interactive UPS System for Transformer-Coupled Loading Conditions. IEEE Access, 2020, 8, 23143-23153.	4.2	8
39	Minimization of Cogging Torque in Axial Field Flux Switching Machine Using Arc Shaped Triangular Magnets. IEEE Access, 2020, 8, 227193-227201.	4.2	18
40	Look-up Data Tables-Based Modeling of Switched Reluctance Machine and Experimental Validation of the Static Torque with Statistical Analysis. Journal of Magnetics, 2020, 25, 233-244.	0.4	19
41	Hierarchical Control Implementation for Meshed AC/Multi-Terminal DC Grids With Offshore Windfarms Integration. IEEE Access, 2019, 7, 142233-142245.	4.2	12
42	Variable-speed, sub-harmonically excited BL-WRSM avoiding unbalanced radial force. Electrical Engineering, 2019, 101, 251-257.	2.0	15
43	Brushless wound field synchronous machine with third-harmonic field excitation using a single inverter. Electrical Engineering, 2019, 101, 165-173.	2.0	17
44	WIND ENERGY CONVERSION SYSTEMS (WECS) GENERATORS: A REVIEW., 2019,,.		18
45	A Comprehensive Review on Axial Flux Machines and Its Applications. , 2019, , .		21
46	Design and Comparative Performance Analysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind turbine Applications. , 2019, , .		1
47	Design and Analysis of a 4-kW Two-Stack Coreless Axial Flux Permanent Magnet Synchronous Machine for Low-Speed Applications. IEEE Access, 2019, 7, 173848-173854.	4.2	25
48	A Series Voltage Sag Compensator with Reduced Magnitude of Transformer Inrush Current. , 2018, , .		1
49	A Sag Compensator That Eliminates the Possibility of Inrush Current While Powering Transformer-Coupled Loads. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 891-900.	5.4	10
50	Erratum to "an online ups system that eliminates the inrush current phenomenon while feeding multiple load transformers" [mar/apr 17 1149-1156]. IEEE Transactions on Industry Applications, 2017, 53, 2650-2650.	4.9	0
51	An Online UPS System That Eliminates the Inrush Current Phenomenon While Feeding Multiple Load Transformers. IEEE Transactions on Industry Applications, 2017, 53, 1149-1156.	4.9	17
52	A three-phase off-line UPS system for transformer coupled loads. IEICE Electronics Express, 2017, 14, 20170815-20170815.	0.8	0
53	A single-phase on-line UPS system for multiple load transformers. IEICE Electronics Express, 2017, 14, 20170050-20170050.	0.8	2
54	Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems. Energies, 2016, 9, 96.	3.1	11

#	Article	IF	CITATIONS
55	Asymmetrical Fault Correction for the Sensitive Loads Using a Current Regulated Voltage Source Inverter. Energies, 2016, 9, 196.	3.1	8
56	Line-interactive Uninterruptible Power Supply System Eliminating the Inrush Current Phenomenon. Electric Power Components and Systems, 2016, 44, 1203-1214.	1.8	11
57	A new single-phase sag compensator intended for transformer-coupled loads. IEICE Electronics Express, 2016, 13, 20160119-20160119.	0.8	2
58	A Cost-Effective, Single-Phase Line-Interactive UPS System that Eliminates Inrush Current Phenomenon for Transformer-Coupled Loads. Journal of Electrical Engineering and Technology, 2016, 11, 675-682.	2.0	6
59	An inrush current elimination technique for a voltage sag compensator while powering transformer-coupled loads. , 2015, , .		2
60	An on-line UPS system that eliminates the inrush current phenomenon while feeding multiple load transformers. , 2015 , , .		5
61	Unsymmetrical fault correction for sensitive loads utilizing a current regulated inverter. , 2014, , .		2
62	An inrush current reduction technique for the line-interactive uninterruptible power supply systems. , $2013, , .$		4