Nicole King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045227/publications.pdf

Version: 2024-02-01

218381 189595 6,932 50 26 h-index citations papers

g-index 57 57 57 7259 docs citations times ranked citing authors all docs

50

#	Article	IF	CITATIONS
1	The history of Salpingoeca rosetta as a model for reconstructing animal origins. Current Topics in Developmental Biology, 2022, 147, 73-91.	1.0	6
2	Identification and structure of an extracellular contractile injection system from the marine bacterium Algoriphagus machipongonensis. Nature Microbiology, 2022, 7, 397-410.	5.9	24
3	Nitric oxide signaling controls collective contractions in a colonial choanoflagellate. Current Biology, 2022, 32, 2539-2547.e5.	1.8	8
4	A flagellate-to-amoeboid switch in the closest living relatives of animals. ELife, 2021, 10, .	2.8	32
5	STING mediates immune responses in the closest living relatives of animals. ELife, 2021, 10, .	2.8	26
6	Synergistic Cues from Diverse Bacteria Enhance Multicellular Development in a Choanoflagellate. Applied and Environmental Microbiology, 2020, 86, .	1.4	12
7	Biophysical principles of choanoflagellate self-organization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1303-1311.	3.3	31
8	Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 2020, 17, 481-494.	9.0	97
9	Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. ELife, 2020, 9, .	2.8	29
10	Light-regulated collective contractility in a multicellular choanoflagellate. Science, 2019, 366, 326-334.	6.0	101
11	The architecture of cell differentiation in choanoflagellates and sponge choanocytes. PLoS Biology, 2019, 17, e3000226.	2.6	74
12	Lessons from simple marine models on the bacterial regulation of eukaryotic development. Current Opinion in Microbiology, 2018, 43, 108-116.	2.3	33
13	Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins. Molecular Biology of the Cell, 2018, 29, 3026-3038.	0.9	56
14	Gene family innovation, conservation and loss on the animal stem lineage. ELife, 2018, 7, .	2.8	149
15	Predicted glycosyltransferases promote development and prevent spurious cell clumping in the choanoflagellate S. rosetta. ELife, 2018, 7, .	2.8	36
16	Finding patches in a heterogeneous aquatic environment: pHâ€taxis by the dispersal stage of choanoflagellates. Limnology and Oceanography Letters, 2017, 2, 37-46.	1.6	19
17	A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Current Biology, 2017, 27, 958-967.	1.8	423
18	Embracing Uncertainty in Reconstructing Early Animal Evolution. Current Biology, 2017, 27, R1081-R1088.	1.8	101

#	Article	IF	CITATIONS
19	The Origin of Animal Multicellularity and Cell Differentiation. Developmental Cell, 2017, 43, 124-140.	3.1	294
20	Mating in the Closest Living Relatives of Animals Is Induced by a Bacterial Chondroitinase. Cell, 2017, 170, 1175-1183.e11.	13.5	105
21	Evolution of an ancient protein function involved in organized multicellularity in animals. ELife, 2016, 5, e10147.	2.8	51
22	The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 2016, 33, 3226-3248.	3.5	107
23	The Future of Cell Biology: Emerging Model Organisms. Trends in Cell Biology, 2016, 26, 818-824.	3.6	93
24	Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7894-7899.	3.3	120
25	Gene regulation in transition. Nature, 2016, 534, 482-483.	13.7	3
26	Isolation and Synthesis of a Bacterially Produced Inhibitor of Rosette Development in Choanoflagellates. Journal of the American Chemical Society, 2016, 138, 4326-4329.	6.6	31
27	Editorial overview: Environmental microbiology: Revisiting the physiology of microorganisms on the single cell scale. Current Opinion in Microbiology, 2015, 25, v-vi.	2.3	1
28	Prey Capture and Phagocytosis in the Choanoflagellate Salpingoeca rosetta. PLoS ONE, 2014, 9, e95577.	1.1	64
29	Evolutionary Insights into Premetazoan Functions of the Neuronal Protein Homer. Molecular Biology and Evolution, 2014, 31, 2342-2355.	3.5	46
30	Synthesis of the Rosette-Inducing Factor RIF-1 and Analogs. Journal of the American Chemical Society, 2014, 136, 10210-10213.	6.6	38
31	Bacterial Influences on Animal Origins. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016162-a016162.	2.3	50
32	The rosetteless gene controls development in the choanoflagellate S. rosetta. ELife, 2014, 3, .	2.8	83
33	Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biology, 2013, 14, R15.	13.9	219
34	Evidence for Sex and Recombination in the Choanoflagellate Salpingoeca rosetta. Current Biology, 2013, 23, 2176-2180.	1.8	92
35	Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3229-3236.	3.3	2,181
36	A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. ELife, $2012,1,e00013.$	2.8	224

#	Article	IF	Citations
37	Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Developmental Biology, 2011, 357, 73-82.	0.9	216
38	Multicellular development in a choanoflagellate. Current Biology, 2010, 20, R875-R876.	1.8	132
39	Nature and Nurture in the Evolution of Cell Biology. Molecular Biology of the Cell, 2010, 21, 3801-3802.	0.9	6
40	The Choanoflagellates: Heterotrophic Nanoflagellates and Sister Group of the Metazoa. Cold Spring Harbor Protocols, 2009, 2009, pdb.emo116-pdb.emo116.	0.2	23
41	Preparation of High-Molecular-Weight Genomic DNA from Monosiga brevicollis and Other Choanoflagellates. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5153-pdb.prot5153.	0.2	4
42	Long-Term Frozen Storage of Choanoflagellate Cultures. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5149.	0.2	7
43	Isolation of Single Choanoflagellate Cells from Field Samples and Establishment of Clonal Cultures. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5147.	0.2	5
44	Visualizing the Subcellular Localization of Actin, Â-Tubulin, and DNA in Monosiga brevicollis. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5150-pdb.prot5150.	0.2	3
45	Starting and Maintaining <i>Monosiga brevicollis</i> Cultures. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5148.	0.2	26
46	Preparation of Total RNA from Monosiga brevicollis and Other Choanoflagellates. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5151-pdb.prot5151.	0.2	3
47	Rapid Preparation of Genomic DNA from <i>Monosiga brevicollis</i> and Other Choanoflagellates. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5152.	0.2	4
48	Separation of Choanoflagellate and Bacterial Genomic DNA. Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5154.	0.2	6
49	The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 2008, 451, 783-788.	13.7	1,006
50	The Unicellular Ancestry of Animal Development. Developmental Cell, 2004, 7, 313-325.	3.1	427