
Francois Foulquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SLC10A7, an orphan member of the SLC10 family involved in congenital disorders of glycosylation. Human Genetics, 2022, 141, 1287-1298.	3.8	3
2	CAMLG-CDG: a novel congenital disorder of glycosylation linked to defective membrane trafficking. Human Molecular Genetics, 2022, , .	2.9	7
3	Towards understanding the extensive diversity of protein <scp><i>N</i></scp> â€glycan structures in eukaryotes. Biological Reviews, 2022, 97, 732-748.	10.4	14
4	TMEM165 a new player in proteoglycan synthesis: loss of TMEM165 impairs elongation of chondroitin- and heparan-sulfate glycosaminoglycan chains of proteoglycans and triggers early chondrocyte differentiation and hypertrophy. Cell Death and Disease, 2022, 13, 11.	6.3	13
5	Differential Effects of D-Galactose Supplementation on Golgi Glycosylation Defects in TMEM165 Deficiency. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	3
6	Variation of the serum <i>N</i> â€glycosylation during the pregnancy of a <scp>MPlâ€CDG</scp> patient. JIMD Reports, 2021, 62, 22-29.	1.5	1
7	Fetal bovine serum impacts the observed Nâ€glycosylation defects in TMEM165 KO HEK cells. Journal of Inherited Metabolic Disease, 2020, 43, 357-366.	3.6	11
8	Serum bikunin isoforms in congenital disorders of glycosylation and linkeropathies. Journal of Inherited Metabolic Disease, 2020, 43, 1349-1359.	3.6	12
9	SPCA1 governs the stability of TMEM165 in Hailey-Hailey disease. Biochimie, 2020, 174, 159-170.	2.6	6
10	Biometals and glycosylation in humans: Congenital disorders of glycosylation shed lights into the crucial role of Golgi manganese homeostasis. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129674.	2.4	25
11	Novel role for the Golgi membrane protein TMEM165 in control of migration and invasion for breast carcinoma. Oncotarget, 2020, 11, 2747-2762.	1.8	11
12	Dissection of TMEM165 function in Golgi glycosylation and its Mn2+ sensitivity. Biochimie, 2019, 165, 123-130.	2.6	22
13	Mutations in <i>MAGT1</i> lead to a glycosylation disorder with a variable phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9865-9870.	7.1	66
14	Involvement of thapsigargin– and cyclopiazonic acid–sensitive pumps in the rescue of TMEM165â€associated glycosylation defects by Mn ²⁺ . FASEB Journal, 2019, 33, 2669-2679.	0.5	21
15	Investigating the functional link between TMEM165 and SPCA1. Biochemical Journal, 2019, 476, 3281-3293.	3.7	12
16	Chemical glycomics enrichment: imaging the recycling of sialic acid in living cells. Journal of Inherited Metabolic Disease, 2018, 41, 515-523.	3.6	12
17	Congenital disorders of glycosylation (CDG): Quo vadis?. European Journal of Medical Genetics, 2018, 61, 643-663.	1.3	191
18	Hypothesis: lobe A (COG1–4)-CDG causes a more severe phenotype than lobe B (COG5–8)-CDG. Journal of Medical Genetics, 2018, 55, 137-142.	3.2	14

FRANCOIS FOULQUIER

#	Article	IF	CITATIONS
19	Expanding the phenotype of metabolic cutis laxa with an additional disorder of N-linked protein glycosylation. European Journal of Human Genetics, 2018, 26, 618-621.	2.8	12
20	Investigating the function of Gdt1p in yeast Golgi glycosylation. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 394-402.	2.4	29
21	Use of Endoglycosidase H as a diagnostic tool for MAN1B1 DG patients. Electrophoresis, 2018, 39, 3133-3141.	2.4	9
22	Protein N-glycosylation alteration and glycolysis inhibition both contribute to the antiproliferative action of 2-deoxyglucose in breast cancer cells. Breast Cancer Research and Treatment, 2018, 171, 581-591.	2.5	30
23	The extended cytoplasmic tail of the human B4GALNT2 is critical for its Golgi targeting and postâ€Golgi sorting. FEBS Journal, 2018, 285, 3442-3463.	4.7	10
24	Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Human Molecular Genetics, 2018, 27, 3029-3045.	2.9	37
25	TMEM165 deficiencies in Congenital Disorders of Glycosylation type II (CDG-II): Clues and evidences for roles of the protein in Golgi functions and ion homeostasis. Tissue and Cell, 2017, 49, 150-156.	2.2	34
26	Evidence for splice transcript variants of TMEM165, a gene involved in CDG. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 737-748.	2.4	8
27	Manganese-induced turnover of TMEM165. Biochemical Journal, 2017, 474, 1481-1493.	3.7	44
28	Galactose Supplementation in Patients With TMEM165-CDG Rescues the Glycosylation Defects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1375-1386.	3.6	61
29	Mutations in <i>TRAPPC11</i> are associated with a congenital disorder of glycosylation. Human Mutation, 2017, 38, 148-151.	2.5	34
30	Mutations in the X-linked <i>ATP6AP2</i> cause a glycosylation disorder with autophagic defects. Journal of Experimental Medicine, 2017, 214, 3707-3729.	8.5	62
31	Yeast Gdt1 is a Golgi-localized calcium transporter required for stress-induced calcium signaling and protein glycosylation. Scientific Reports, 2016, 6, 24282.	3.3	48
32	Glycosylation abnormalities in Gdt1p/TMEM165 deficient cells result from a defect in Golgi manganese homeostasis. Human Molecular Genetics, 2016, 25, 1489-1500.	2.9	92
33	CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. American Journal of Human Genetics, 2016, 98, 310-321.	6.2	88
34	TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. American Journal of Human Genetics, 2016, 98, 322-330.	6.2	73
35	ALG11-CDG: Three novel mutations and further characterization of the phenotype. Molecular Genetics and Metabolism Reports, 2015, 2, 16-19.	1.1	14
36	Abnormal cartilage development and altered N-glycosylation in Tmem165-deficient zebrafish mirrors the phenotypes associated with TMEM165-CDC. Glycobiology, 2015, 25, 669-682.	2.5	29

FRANCOIS FOULQUIER

#	Article	IF	CITATIONS
37	Golgi postâ€ŧranslational modifications and associated diseases. Journal of Inherited Metabolic Disease, 2015, 38, 741-751.	3.6	28
38	Cohen syndrome is associated with major glycosylation defects. Human Molecular Genetics, 2014, 23, 2391-2399.	2.9	79
39	Assessing ER and Golgi N-Glycosylation Process Using Metabolic Labeling in Mammalian Cultured Cells. Methods in Cell Biology, 2013, 118, 157-176.	1.1	7
40	Alkynyl monosaccharide analogues as a tool for evaluating Golgi glycosylation efficiency: application to Congenital Disorders of Glycosylation (CDG). Chemical Communications, 2013, 49, 11293.	4.1	24
41	Glycosylation disorders of membrane trafficking. Glycoconjugate Journal, 2013, 30, 23-31.	2.7	53
42	Newly characterized Golgi-localized family of proteins is involved in calcium and pH homeostasis in yeast and human cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6859-6864.	7.1	129
43	MAN1B1 Deficiency: An Unexpected CDG-II. PLoS Genetics, 2013, 9, e1003989.	3.5	63
44	Impact of disease-causing mutations on TMEM165 subcellular localization, a recently identified protein involved in CDG-II. Human Molecular Genetics, 2013, 22, 2914-2928.	2.9	39
45	Insulin signaling controls the expression of O â€GlcNAc transferase and its interaction with lipid microdomains. FASEB Journal, 2013, 27, 3478-3486.	0.5	43
46	PUGNAc treatment leads to an unusual accumulation of free oligosaccharides in CHO cells. Journal of Biochemistry, 2012, 151, 439-446.	1.7	20
47	DPM2 DG: A muscular dystrophy–dystroglycanopathy syndrome with severe epilepsy. Annals of Neurology, 2012, 72, 550-558.	5.3	121
48	TMEM165 Deficiency Causes a Congenital Disorder of Glycosylation. American Journal of Human Genetics, 2012, 91, 15-26.	6.2	162
49	Characterization of O-GlcNAc cycling and proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1839-1848.	2.4	56
50	COG5-CDG: expanding the clinical spectrum. Orphanet Journal of Rare Diseases, 2012, 7, 94.	2.7	36
51	Identification of phosphorylated oligosaccharides in cells of patients with a congenital disorders of glycosylation (CDG-I). Biochimie, 2011, 93, 823-833.	2.6	23
52	How Golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology, 2011, 21, 853-863.	2.5	75
53	Overexpression of Man2C1 leads to protein underglycosylation and upregulation of endoplasmic reticulum-associated degradation pathway. Glycobiology, 2011, 21, 363-375.	2.5	22
54	Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of β1,4-galactosyltransferase 1 and α2,6-sialyltransferase 1. Glycobiology, 2011, 21, 864-876.	2.5	33

FRANCOIS FOULQUIER

#	Article	IF	CITATIONS
55	Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient. Glycobiology, 2009, 19, 910-917.	2.5	20
56	Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Human Molecular Genetics, 2009, 18, 3244-3256.	2.9	129
57	Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Human Molecular Genetics, 2009, 18, 4350-4356.	2.9	104
58	RFT1 deficiency in three novel CDG patients. Human Mutation, 2009, 30, 1428-1434.	2.5	25
59	A new mutation in COG7 extends the spectrum of COG subunit deficiencies. European Journal of Medical Genetics, 2009, 52, 303-305.	1.3	34
60	COG defects, birth and rise!. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 896-902.	3.8	70
61	Screening for OST deficiencies in unsolved CDG-I patients. Biochemical and Biophysical Research Communications, 2009, 390, 769-774.	2.1	15
62	Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2. Nature Genetics, 2008, 40, 32-34.	21.4	330
63	Oligosaccharyltransferase-Subunit Mutations in Nonsyndromic Mental Retardation. American Journal of Human Genetics, 2008, 82, 1150-1157.	6.2	130
64	Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Molecular Genetics and Metabolism, 2008, 93, 15-21.	1.1	97
65	Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Human Molecular Genetics, 2008, 18, 517-524.	2.9	40
66	Characterization of two unusual truncating PMM2 mutations in two CDG-la patients. Molecular Genetics and Metabolism, 2007, 90, 408-413.	1.1	42
67	A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Human Molecular Genetics, 2007, 16, 717-730.	2.9	114
68	A rapid mass spectrometric strategy for the characterization ofN- andO-glycan chains in the diagnosis of defects in glycan biosynthesis. Proteomics, 2007, 7, 1800-1813.	2.2	47
69	Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3764-3769.	7.1	175
70	Discrimination between lumenal and cytosolic sites of deglycosylation in endoplasmic reticulum-associated degradation of glycoproteins by using benzyl mannose in CHO cell lines. Glycobiology, 2004, 14, 841-849.	2.5	5
71	Endoplasmic reticulum-associated degradation of glycoproteins bearing Man5GlcNAc2 and Man9GlcNAc2 species in the MI8-5 CHO cell line. FEBS Journal, 2004, 271, 398-404.	0.2	25
72	The unfolded protein response in a dolichyl phosphate mannose-deficient Chinese hamster ovary cell line points out the key role of a demannosylation step in the quality-control mechanism of N-glycoproteins. Biochemical Journal, 2002, 362, 491.	3.7	20

#	Article	IF	CITATIONS
73	The unfolded protein response in a dolichyl phosphate mannose-deficient Chinese hamster ovary cell line points out the key role of a demannosylation step in the quality-control mechanism of N-glycoproteins. Biochemical Journal, 2002, 362, 491-498.	3.7	29