
Douglas R Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4045054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Experimental Hematology, 2002, 30, 879-886.	0.4	245
2	In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Molecular Therapy, 2016, 24, 1247-1257.	8.2	98
3	Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Molecular Therapy, 2016, 24, 726-735.	8.2	93
4	Therapeutic Response in Feline Sandhoff Disease Despite Immunity to Intracranial Gene Therapy. Molecular Therapy, 2013, 21, 1306-1315.	8.2	71
5	Direct Intracranial Injection of AAVrh8 Encoding Monkey \hat{l}^2 -N-Acetylhexosaminidase Causes Neurotoxicity in the Primate Brain. Human Gene Therapy, 2017, 28, 510-522.	2.7	66
6	Adeno-Associated Virus Gene Therapy in a Sheep Model of Tay–Sachs Disease. Human Gene Therapy, 2018, 29, 312-326.	2.7	61
7	A Safe and Reliable Technique for CNS Delivery of AAV Vectors in the Cisterna Magna. Molecular Therapy, 2020, 28, 411-421.	8.2	58
8	Sustained Normalization of Neurological Disease after Intracranial Gene Therapy in a Feline Model. Science Translational Medicine, 2014, 6, 231ra48.	12.4	56
9	An inversion of 25 base pairs causes feline G M2 gangliosidosis variant 0. Experimental Neurology, 2004, 187, 30-37.	4.1	54
10	Bis(monoacylglycero)phosphate: a secondary storage lipid in the gangliosidoses. Journal of Lipid Research, 2015, 56, 1005-1006.	4.2	54
11	AAV gene therapy for Tay-Sachs disease. Nature Medicine, 2022, 28, 251-259.	30.7	49
12	Mutation of the GM2 activator protein in a feline model of GM2 gangliosidosis. Acta Neuropathologica, 2005, 110, 443-450.	7.7	47
13	Comparative Analysis of Brain Lipids in Mice, Cats, and Humans with Sandhoff Disease. Lipids, 2009, 44, 197-205.	1.7	47
14	Neurodegenerative lysosomal storage disease in European Burmese cats with hexosaminidase β-subunit deficiency. Molecular Genetics and Metabolism, 2009, 97, 53-59.	1.1	47
15	AAV-Mediated Gene Delivery in a Feline Model of Sandhoff Disease Corrects Lysosomal Storage in the Central Nervous System. ASN Neuro, 2015, 7, 175909141556990.	2.7	47
16	Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy. Molecular Genetics and Metabolism, 2012, 107, 203-212.	1.1	41
17	Molecular consequences of the pathogenic mutation in feline GM1 gangliosidosis. Molecular Genetics and Metabolism, 2008, 94, 212-221.	1.1	36
18	Novel Biomarkers of Human GM1 Gangliosidosis Reflect the Clinical Efficacy of Gene Therapy in a Feline Model. Molecular Therapy, 2017, 25, 892-903.	8.2	36

DOUGLAS R MARTIN

#	Article	IF	CITATIONS
19	High resolution MRI anatomy of the cat brain at 3Tesla. Journal of Neuroscience Methods, 2014, 227, 10-17.	2.5	35
20	Polyethylene glycol-b-poly(lactic acid) polymersomes as vehicles for enzyme replacement therapy. Nanomedicine, 2017, 12, 2591-2606.	3.3	32
21	GM1 Gangliosidosis: Mechanisms and Management. The Application of Clinical Genetics, 2021, Volume 14, 209-233.	3.0	29
22	Animal models of GM2 gangliosidosis: utility and limitations. The Application of Clinical Genetics, 2016, Volume 9, 111-120.	3.0	28
23	Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Molecular Genetics and Metabolism, 2015, 116, 80-87.	1.1	27
24	Biomarkers for disease progression and AAV therapeutic efficacy in feline Sandhoff disease. Experimental Neurology, 2015, 263, 102-112.	4.1	26
25	Emerging therapies for neuropathic lysosomal storage disorders. Progress in Neurobiology, 2017, 152, 166-180.	5.7	25
26	AAV-mediated gene delivery attenuates neuroinflammation in feline Sandhoff disease. Neuroscience, 2017, 340, 117-125.	2.3	20
27	Lipidomic Evaluation of Feline Neurologic Disease after AAV Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2017, 6, 135-142.	4.1	17
28	Pronounced Therapeutic Benefit of a Single Bidirectional AAV Vector Administered Systemically in Sandhoff Mice. Molecular Therapy, 2020, 28, 2150-2160.	8.2	16
29	Generation and characterization of recombinant feline β-galactosidase for preclinical enzyme replacement therapy studies in GM1 gangliosidosis. Metabolic Brain Disease, 2008, 23, 161-173.	2.9	15
30	7T MRI Predicts Amelioration of Neurodegeneration in the Brain after AAV Gene Therapy. Molecular Therapy - Methods and Clinical Development, 2020, 17, 258-270.	4.1	15
31	Whole-Genome Shotgun Metagenomic Sequencing Reveals Distinct Gut Microbiome Signatures of Obese Cats. Microbiology Spectrum, 2022, 10, e0083722.	3.0	15
32	Whole-slide image analysis outperforms micrograph acquisition for adipocyte size quantification. Adipocyte, 2020, 9, 567-575.	2.8	12
33	Real-time MR tracking of AAV gene therapy with βgal-responsive MR probe in a murine model of GM1-gangliosidosis. Molecular Therapy - Methods and Clinical Development, 2021, 23, 128-134.	4.1	8
34	Therapeutic benefit after intracranial gene therapy delivered during the symptomatic stage in a feline model of Sandhoff disease. Gene Therapy, 2021, 28, 142-154.	4.5	7
35	Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain, 2022, 145, 655-669.	7.6	7
36	Ganglioside Storage Diseases: On the Road to Management. Advances in Neurobiology, 2014, 9, 485-499.	1.8	7

DOUGLAS R MARTIN

#	Article	IF	CITATIONS
37	Amylin and pramlintide modulate Î ³ -secretase level and APP processing in lipid rafts. Scientific Reports, 2020, 10, 3751.	3.3	6
38	AAV Gene Therapy Strategies for Lysosomal Storage Disorders with Central Nervous System Involvement. Neuromethods, 2015, , 265-295.	0.3	5
39	PEA15 loss of function and defective cerebral development in the domestic cat. PLoS Genetics, 2020, 16, e1008671.	3.5	4
40	Natural history study of glycan accumulation in large animal models of GM2 gangliosidoses. PLoS ONE, 2020, 15, e0243006.	2.5	3
41	Abnormal epiphyseal development in a feline model of Sandhoff disease. Journal of Orthopaedic Research, 2020, 38, 2580-2591.	2.3	2
42	Natural history of Tay-Sachs disease in sheep. Molecular Genetics and Metabolism, 2021, 134, 164-174.	1.1	2
43	White Matter Pathology as a Barrier to Gangliosidosis Gene Therapy. Frontiers in Cellular Neuroscience, 2021, 15, 682106.	3.7	2
44	Molecular cloning, sequencing, and distribution of feline GnRH receptor (GnRHR) and resequencing of canine GnRHR. Theriogenology, 2015, 83, 266-275.	2.1	1
45	PEA15 loss of function and defective cerebral development in the domestic cat. , 2020, 16, e1008671.		0
46	PEA15 loss of function and defective cerebral development in the domestic cat. , 2020, 16, e1008671.		0
47	PEA15 loss of function and defective cerebral development in the domestic cat. , 2020, 16, e1008671.		0
48	PEA15 loss of function and defective cerebral development in the domestic cat. , 2020, 16, e1008671.		0