
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4044889/publications.pdf Version: 2024-02-01

ΗΠΑ ΜΑΝΟ

#	Article	IF	CITATIONS
1	Flexible aqueous Ca-ion full battery with super-flat discharge voltage plateau. Nano Research, 2022, 15, 701-708.	5.8	27
2	Physicochemical characterization and flocculation performance evaluation of <scp>PAC</scp> / <scp>PMAPTAC</scp> composite flocculant. Journal of Applied Polymer Science, 2022, 139, 51653.	1.3	6
3	Novle layered boron nitride nanosheets/cellulose nanofibers/epoxy composite with high thermal conductivity. High Performance Polymers, 2022, 34, 87-94.	0.8	3
4	2,3-diaminophenazine as a high-rate rechargeable aqueous zinc-ion batteries cathode. Journal of Colloid and Interface Science, 2022, 607, 1262-1268.	5.0	18
5	3D porous Fluorine-Doped NaTi2(PO4)3@C as High-Performance Sodium-Ion battery anode with broad temperature adaptability. Chemical Engineering Journal, 2022, 430, 132710.	6.6	27
6	Low-temperature and high-rate Zn metal batteries enabled by mitigating Zn2+ concentration polarization. Chemical Engineering Journal, 2022, 433, 134589.	6.6	35
7	Highly Reversible and Anticorrosive Zn Anode Enabled by a Ag Nanowires Layer. ACS Applied Materials & Interfaces, 2022, 14, 9097-9105.	4.0	19
8	Economic synthesis of sub-micron brick-like Al-MOF with designed pore distribution for lithium-ion battery anodes with high initial Coulombic efficiency and cycle stability. Dalton Transactions, 2022, 51, 6787-6794.	1.6	3
9	Highly reversible and stable Zn metal anode under wide temperature conditions enabled by modulating electrolyte chemistry. Chemical Engineering Journal, 2022, 442, 136218.	6.6	30
10	A Multidimensional Topotactic Host Composite Anode Toward Transparent Flexible Potassium-Ion Microcapacitors. ACS Applied Materials & Interfaces, 2022, 14, 1478-1488.	4.0	9
11	Recent progress of flexible aqueous multivalent ion batteries. , 2022, 4, 411-445.		32
12	Synergistical heterointerface engineering of Fe-Se nanocomposite for high-performance sodium-ion hybrid capacitors. Rare Metals, 2022, 41, 2470-2480.	3.6	10
13	Low-temperature and high-rate sodium metal batteries enabled by electrolyte chemistry. Energy Storage Materials, 2022, 50, 47-54.	9.5	36
14	Significantly enhanced thermally conductive epoxy composite composed of caterpillar-like structured expanded graphite/ boron nitride nanotubes. High Performance Polymers, 2022, 34, 1018-1027.	0.8	2
15	Advances in flexible lithium metal batteries. Science China Materials, 2022, 65, 2035-2059.	3.5	17
16	Dynamic Biomolecular "Mask―Stabilizes Zn Anode. Small, 2022, 18, .	5.2	21
17	Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Metals, 2021, 40, 309-328.	3.6	115
18	Rechargeable Aqueous Aluminum Organic Batteries. Angewandte Chemie - International Edition, 2021, 60, 5794-5799.	7.2	56

#	Article	IF	CITATIONS
19	Rechargeable Aqueous Aluminum Organic Batteries. Angewandte Chemie, 2021, 133, 5858-5863.	1.6	20
20	Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy Storage Materials, 2021, 35, 19-46.	9.5	212
21	Highly-dispersed Ge quantum dots in carbon frameworks for ultra-long-life sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 7778-7786.	3.2	16
22	Anion Solvation Regulation Enables Long Cycle Stability of Graphite Cathodes. ACS Energy Letters, 2021, 6, 949-958.	8.8	57
23	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Research, 2021, 14, 4154-4162.	5.8	13
24	Sowing Silver Seeds within Patterned Ditches for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2021, 8, e2100684.	5.6	42
25	Synthesis and properties of responsive self-healing polyurethane containing dynamic disulfide bonds. High Performance Polymers, 2021, 33, 1132-1140.	0.8	3
26	Ultrafast Rechargeable Aqueous Zincâ€lon Batteries Based on Stable Radical Chemistry. Advanced Functional Materials, 2021, 31, 2102011.	7.8	56
27	A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38194-38201.	4.0	21
28	High Toughness Polyurethane toward Artificial Muscles, Tuned by Mixing Dynamic Hard Domains. Macromolecules, 2021, 54, 8243-8254.	2.2	32
29	Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Materials, 2021, 43, 172-181.	9.5	18
30	Intrinsic Structure Modification of Electrode Materials for Aqueous Metalâ€Ion and Metalâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2006855.	7.8	36
31	Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 54096-54105.	4.0	10
32	Traditional Chinese medicine residue-derived micropore-rich porous carbon frameworks as efficient sulfur hosts for high-performance lithium–sulfur batteries. Dalton Transactions, 2021, 51, 129-135.	1.6	13
33	A high-performance flexible aqueous Al ion rechargeable battery with long cycle life. Energy Storage Materials, 2020, 25, 426-435.	9.5	77
34	Vacuumâ€Dried 3D Holey Graphene Frameworks Enabling High Mass Loading and Fast Charge Transfer for Advanced Batteries. Energy Technology, 2020, 8, 1901002.	1.8	8
35	Germanium-based high-performance dual-ion batteries. Nanoscale, 2020, 12, 79-84.	2.8	31
36	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 3681-3687.	4.0	28

#	Article	IF	CITATIONS
37	Realizing Few‣ayer Iodinene for Highâ€Rate Sodium″on Batteries. Advanced Materials, 2020, 32, e2004835.	11.1	41
38	A Superior Flameâ€Resistant and Wideâ€Temperature Adaptable Yarn Lithiumâ€Ion Battery with a Highly Conductive Ionogel Electrolyte. ChemElectroChem, 2020, 7, 3998-4002.	1.7	3
39	The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Advanced Science, 2020, 7, 2001116.	5.6	185
40	Analysis of the microphase structure and performance of self-healing polyurethanes containing dynamic disulfide bonds. Soft Matter, 2020, 16, 9128-9139.	1.2	19
41	Nanopile Interlocking Separator Coating toward Uniform Li Deposition of the Li Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 43543-43552.	4.0	22
42	Nanostructure Design Strategies for Aqueous Zincâ€ion Batteries. ChemElectroChem, 2020, 7, 2957-2978.	1.7	44
43	Stable Lithium Metal Anode Enabled by 3D Soft Host. ACS Applied Materials & Interfaces, 2020, 12, 28337-28344.	4.0	36
44	High-Voltage Flexible Aqueous Zn-Ion Battery with Extremely Low Dropout Voltage and Super-Flat Platform. Nano-Micro Letters, 2020, 12, 75.	14.4	36
45	Bioâ€Inspired Isoalloxazine Redox Moieties for Rechargeable Aqueous Zincâ€Ion Batteries. Chemistry - an Asian Journal, 2020, 15, 1290-1295.	1.7	31
46	Inner-Stress-Optimized High-Density Fe ₃ O ₄ Dots Embedded in Graphitic Carbon Layers with Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 15043-15052.	4.0	20
47	Tellurium: A Highâ€Volumetric apacity Potassiumâ€ion Battery Electrode Material. Advanced Materials, 2020, 32, e1908027.	11.1	83
48	A zinc ion yarn battery with high capacity and fire retardancy based on a SiO ₂ nanoparticle doped ionogel electrolyte. Soft Matter, 2020, 16, 7432-7437.	1.2	7
49	Sustainable treatment of dye wastewater for high-performance rechargeable battery cathodes. Energy Storage Materials, 2019, 17, 334-340.	9.5	13
50	Electrolyte Chemistry Enables Simultaneous Stabilization of Potassium Metal and Alloying Anode for Potassiumâ€ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 16451-16455.	7.2	158
51	High-Performance Phosphorus–Graphite Dual-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 45755-45762.	4.0	37
52	Electrolyte Chemistry Enables Simultaneous Stabilization of Potassium Metal and Alloying Anode for Potassiumâ€ion Batteries. Angewandte Chemie, 2019, 131, 16603-16607.	1.6	28
53	lodine encapsulated in mesoporous carbon enabling high-efficiency capacitive potassium-lon storage. Journal of Colloid and Interface Science, 2019, 551, 177-183.	5.0	16
54	A flexible aqueous Al ion rechargeable full battery. Chemical Engineering Journal, 2019, 373, 580-586.	6.6	86

#	Article	IF	CITATIONS
55	Facile and scalable preparation of 3D SnO ₂ /holey graphene composite frameworks for stable lithium storage at a high mass loading level. Inorganic Chemistry Frontiers, 2019, 6, 1367-1373.	3.0	19
56	Recent Advances on Selfâ€Healing Materials and Batteries. ChemElectroChem, 2019, 6, 1605-1622.	1.7	41
57	A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Materials, 2019, 21, 174-179.	9.5	48
58	Renewable-lawsone-based sustainable and high-voltage aqueous flow battery. Energy Storage Materials, 2019, 19, 62-68.	9.5	30
59	Alkali Metal Anodes for Rechargeable Batteries. CheM, 2019, 5, 313-338.	5.8	170
60	Fewâ€Layer Bismuthene with Anisotropic Expansion for Highâ€Arealâ€Capacity Sodiumâ€Ion Batteries. Advanced Materials, 2019, 31, e1807874.	11.1	165
61	A densely packed Sb2O3nanosheet–graphene aerogel toward advanced sodium-ion batteries. Nanoscale, 2018, 10, 9108-9114.	2.8	46
62	Renewable juglone nanowires with size-dependent charge storage properties. RSC Advances, 2018, 8, 2077-2081.	1.7	12
63	Synthesis and luminescence properties of cubicâ€shaped Ca _{1â€<i>x</i>} TiO ₃ :Eu ³⁺ particles. Luminescence, 2018, 33, 443-449.	1.5	2
64	Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries. Nano Energy, 2018, 45, 220-228.	8.2	190
65	Recent progress of unconventional and multifunctional integrated supercapacitors. Chinese Chemical Letters, 2018, 29, 564-570.	4.8	24
66	Selfâ€Assembled Biomolecular 1D Nanostructures for Aqueous Sodiumâ€ion Battery. Advanced Science, 2018, 5, 1700634.	5.6	107
67	Flexible Micro‣upercapacitors Based on Naturally Derived Juglone. ChemPlusChem, 2018, 83, 423-430.	1.3	7
68	Confined metal Ge quantum dots in carbon nanofibers for stable rechargeable batteries. Nanoscale, 2018, 10, 6872-6877.	2.8	27
69	Harnessing the Periplasm of Bacterial Cells To Develop Biocatalysts for the Biosynthesis of Highly Pure Chemicals. Applied and Environmental Microbiology, 2018, 84, .	1.4	7
70	Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon, 2018, 128, 224-230.	5.4	169
71	Facile synthesis of an urchin-like Sb ₂ S ₃ nanostructure with high photocatalytic activity. RSC Advances, 2018, 8, 18451-18455.	1.7	12
72	In Situ Atomicâ€Scale Study of Particleâ€Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation. Advanced Science, 2018, 5, 1700992.	5.6	74

#	Article	IF	CITATIONS
73	Morphology memory but reconstructing crystal structure: porous hexagonal GeO ₂ nanorods for rechargeable lithium-ion batteries. Nanoscale, 2017, 9, 3961-3968.	2.8	26
74	Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst, The, 2017, 142, 326-335.	1.7	103
75	Dye Wastewater Cleanup by Graphene Composite Paper for Tailorable Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 21298-21306.	4.0	41
76	Pseudocapacitive-dye-molecule-based high-performance flexible supercapacitors. Nanoscale, 2017, 9, 9879-9885.	2.8	20
77	Renewable-emodin-based wearable supercapacitors. Nanoscale, 2017, 9, 1423-1427.	2.8	17
78	Natureâ€Inspired Electrochemical Energyâ€Storage Materials and Devices. Advanced Energy Materials, 2017, 7, 1601709.	10.2	119
79	Phase Evolution of VO ₂ Polymorphs during Hydrothermal Treatment in the Presence of AOT. Crystal Growth and Design, 2017, 17, 5927-5934.	1.4	17
80	Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes. ACS Applied Materials & Interfaces, 2017, 9, 39618-39625.	4.0	80
81	Smart Electrochemical Energy Storage Devices with Selfâ€Protection and Selfâ€Adaptation Abilities. Advanced Materials, 2017, 29, 1703040.	11.1	77
82	Renewableâ€Biomoleculeâ€Based Electrochemical Energyâ€Storage Materials. Advanced Energy Materials, 2017, 7, 1700663.	10.2	85
83	Nanomaterials for Sensing Applications. Journal of Nanotechnology, 2016, 2016, 1-2.	1.5	17
84	Transitionâ€Metalâ€Free Biomoleculeâ€Based Flexible Asymmetric Supercapacitors. Small, 2016, 12, 4683-4689.	5.2	45
85	Flexible Integrated Electrical Cables Based on Biocomposites for Synchronous Energy Transmission and Storage. Advanced Functional Materials, 2016, 26, 3472-3479.	7.8	72
86	Ultra‣ightweight Resistive Switching Memory Devices Based on Silk Fibroin. Small, 2016, 12, 3360-3365.	5.2	97
87	Memory Arrays: Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture (Adv. Mater. 8/2016). Advanced Materials, 2016, 28, 1526-1526.	11.1	3
88	Hierarchically branched Fe ₂ O ₃ @TiO ₂ nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 11284-11290.	2.8	87
89	Supercapacitors: Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors (Small) Tj ETQq1 1	0.78431 5.2	4 ₀ gBT /Ove
90	TiO ₂ seed-assisted growth of VO ₂ (M) films and thermochromic performance.	1.3	8

CrystEngComm, 2016, 18, 7140-7146.

#	Article	IF	CITATIONS
91	3D nest-shaped Sb ₂ O ₃ /RGO composite based high-performance lithium-ion batteries. Nanoscale, 2016, 8, 17131-17135.	2.8	45
92	Renewableâ€Biomoleculeâ€Based Full Lithiumâ€ion Batteries. Advanced Materials, 2016, 28, 3486-3492.	11.1	147
93	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	11.1	173
94	Facet-defined AgCl nanocrystals with surface-electronic-structure-dominated photoreactivities. Nano Energy, 2016, 19, 8-16.	8.2	38
95	Active and dynamic infrared switching of VO ₂ (M) nanoparticle film on ITO glass. Journal of Materials Chemistry C, 2016, 4, 1579-1583.	2.7	26
96	A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 142, 50-54.	2.0	23
97	Star-shaped VO ₂ (M) nanoparticle films with high thermochromic performance. CrystEngComm, 2015, 17, 5614-5619.	1.3	38
98	A Highâ€Rate and Ultralongâ€Life Sodiumâ€lon Battery Based on NaTi ₂ (PO ₄) ₃ Nanocubes with Synergistic Coating of Carbon and Rutile TiO ₂ . Small, 2015, 11, 3744-3749.	5.2	129
99	Renewableâ€Jugloneâ€Based Highâ€Performance Sodiumâ€Ion Batteries. Advanced Materials, 2015, 27, 2348-23	35 14. .1	208
100	A fast self-cleaning SERS-active substrate based on an inorganic–organic hybrid nanobelt film. Physical Chemistry Chemical Physics, 2015, 17, 20840-20845.	1.3	7
101	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Advanced Materials, 2015, 27, 5559-5566.	11.1	268
102	Fabrication and properties of carbon nanotube/styrene–ethylene–butylene–styrene composites via a sequential process of (electrostatic adsorption aided dispersion)â€plusâ€(melt mixing). Journal of Applied Polymer Science, 2014, 131, .	1.3	5
103	Preparation and properties of waterborne polyurethane/antimony doped tin oxide nanocomposite coatings via sol-gel reactions. Polymer Composites, 2014, 35, 1169-1175.	2.3	9
104	Graphene and Grapheneâ€like Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	5.2	535
105	A Mechanically and Electrically Selfâ€Healing Supercapacitor. Advanced Materials, 2014, 26, 3638-3643.	11.1	351
106	Artificial Skin: Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors (Small) Tj ETQq0 0 0 i	gBT/Over	·logk 10 Tf 5(

107	Aluminum-doped zinc oxide nanoparticles with tunable near-infrared absorption/reflectance by a simple solvothermal process. RSC Advances, 2014, 4, 42758-42763.	1.7	14
108	Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small, 2014, 10, 3625-3631.	5.2	540

#	Article	IF	CITATIONS
109	Programmable Photoâ€Electrochemical Hydrogen Evolution Based on Multiâ€&egmented CdSâ€Au Nanorod Arrays. Advanced Materials, 2014, 26, 3506-3512.	11.1	150
110	Supercapacitors: A Mechanically and Electrically Self-Healing Supercapacitor (Adv. Mater. 22/2014). Advanced Materials, 2014, 26, 3637-3637.	11.1	6
111	Design and synthesis of the polyaniline interface for polyamide 66/multi-walled carbon nanotube electrically conductive composites. Colloid and Polymer Science, 2013, 291, 1001-1007.	1.0	9
112	Facile Synthesis of One Dimensional AgBr@Ag Nanostructures and Their Visible Light Photocatalytic Properties. ACS Applied Materials & Interfaces, 2013, 5, 12283-12287.	4.0	45
113	Well-graphitized graphene as photoinduced charge transport channel for improving the photocatalytic activity of AgBr. New Journal of Chemistry, 2013, 37, 1797.	1.4	4
114	AgBr Nanocrystals from Plates to Cubes and Their Photocatalytic Properties. ChemCatChem, 2013, 5, 1426-1430.	1.8	13
115	Facile synthesis of AgBr nanocubes for highly efficient visible light photocatalysts. CrystEngComm, 2012, 14, 7563.	1.3	21
116	Facile synthesis of Ag3PO4 tetrapod microcrystals with an increased percentage of exposed {110} facets and highly efficient photocatalytic properties. CrystEngComm, 2012, 14, 8342.	1.3	85
117	Facile synthesis of AgBr nanoplates with exposed {111} facets and enhanced photocatalytic properties. Chemical Communications, 2012, 48, 275-277.	2.2	123
118	Three Dimensional Design of Large-Scale TiO ₂ Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. ACS Applied Materials & Interfaces, 2012, 4, 3432-3437.	4.0	187
119	Highly Reproducible Surfaceâ€Enhanced Raman Spectra on Semiconductor SnO ₂ Octahedral Nanoparticles. ChemPhysChem, 2012, 13, 3932-3936.	1.0	57
120	Au/TiO ₂ /Au as a Plasmonic Coupling Photocatalyst. Journal of Physical Chemistry C, 2012, 116, 6490-6494.	1.5	220
121	SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells. CrystEngComm, 2012, 14, 5177.	1.3	67
122	Facetâ€Dependent Photocatalytic Properties of AgBr Nanocrystals. Small, 2012, 8, 2802-2806.	5.2	84
123	Targetâ€Cellâ€ S pecific Delivery, Imaging, and Detection of Intracellular MicroRNA with a Multifunctional SnO ₂ Nanoprobe. Angewandte Chemie - International Edition, 2012, 51, 4607-4612.	7.2	115
124	Polyhedral AgBr Microcrystals with an Increased Percentage of Exposed {111} Facets as a Highly Efficient Visible‣ight Photocatalyst. Chemistry - A European Journal, 2012, 18, 4620-4626.	1.7	62
125	A Facile Way to Rejuvenate Ag ₃ PO ₄ as a Recyclable Highly Efficient Photocatalyst. Chemistry - A European Journal, 2012, 18, 5524-5529.	1.7	163
126	The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials. Journal of Materials Chemistry, 2011, 21, 10189.	6.7	85

#	Article	IF	CITATIONS
127	Preparation of Flower-like SnO ₂ Nanostructures and Their Applications in Gas-Sensing and Lithium Storage. Crystal Growth and Design, 2011, 11, 2942-2947.	1.4	141
128	Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 7008.	1.3	138
129	Novel route to polyaniline nanofibers from miniemulsion polymerization. Journal of Materials Science, 2011, 46, 1049-1052.	1.7	10
130	CdS Quantum Dots-Sensitized TiO ₂ Nanorod Array on Transparent Conductive Glass Photoelectrodes. Journal of Physical Chemistry C, 2010, 114, 16451-16455.	1.5	288
131	Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells. Journal of Colloid and Interface Science, 2009, 330, 386-391.	5.0	33
132	Application of tetrahydrofuran dispersant in microemulsion for fabricating titania mesoporous thin film. Journal of Colloid and Interface Science, 2007, 314, 584-588.	5.0	6