Kristjan Eimre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4044817/publications.pdf

Version: 2024-02-01

			331670	377865
ı	33	1,689	21	34
	papers	citations	h-index	g-index
	36	36	36	1406
	all docs	docs citations	times ranked	citing authors
	un doco	does citations	mico funcci	oring additions

#	Article	IF	CITATIONS
1	Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology, 2020, 15, 22-28.	31.5	227
2	Synthesis and Characterization of π-Extended Triangulene. Journal of the American Chemical Society, 2019, 141, 10621-10625.	13.7	165
3	Observation of fractional edge excitations in nanographene spin chains. Nature, 2021, 598, 287-292.	27.8	115
4	Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 9104-9107.	13.7	110
5	Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nature Chemistry, 2021, 13, 581-586.	13.6	104
6	Collective Allâ€Carbon Magnetism in Triangulene Dimers**. Angewandte Chemie - International Edition, 2020, 59, 12041-12047.	13.8	96
7	On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1- <i>b</i>) Ifluorene Polymers and Their Lateral Fusion into Porous Ribbons. Journal of the American Chemical Society, 2019, 141, 12346-12354.	13.7	71
8	Thermal runaway of metal nano-tips during intense electron emission. Journal Physics D: Applied Physics, 2018, 51, 225203.	2.8	68
9	Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Letters, 2020, 20, 6429-6436.	9.1	64
10	Synthesis and characterization of [7] triangulene. Nanoscale, 2021, 13, 1624-1628.	5.6	62
11	On-Surface Synthesis of a Nonplanar Porous Nanographene. Journal of the American Chemical Society, 2019, 141, 7726-7730.	13.7	61
12	On-Surface Synthesis of Non-Benzenoid Nanographenes by Oxidative Ring-Closure and Ring-Rearrangement Reactions. Journal of the American Chemical Society, 2020, 142, 13565-13572.	13.7	58
13	On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon–Heptagon Pairs. Journal of the American Chemical Society, 2020, 142, 10291-10296.	13.7	53
14	Onâ€Surface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie - International Edition, 2020, 59, 1334-1339.	13.8	47
15	Massive Dirac Fermion Behavior in a Low Bandgap Graphene Nanoribbon Near a Topological Phase Boundary. Advanced Materials, 2020, 32, e1906054.	21.0	44
16	AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Computational Materials Science, 2021, 188, 110165.	3.0	40
17	Large-Cavity Coronoids with Different Inner and Outer Edge Structures. Journal of the American Chemical Society, 2020, 142, 12046-12050.	13.7	38
18	On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents., 2022, 1, 289-296.		31

#	Article	IF	CITATIONS
19	On-surface synthesis of singly and doubly porphyrin-capped graphene nanoribbon segments. Chemical Science, 2021, 12, 247-252.	7.4	27
20	On-surface synthesis and characterization of nitrogen-substituted undecacenes. Nature Communications, 2022, 13, 511.	12.8	26
21	On-surface synthesis of polyazulene with 2,6-connectivity. Chemical Communications, 2019, 55, 13466-13469.	4.1	23
22	Collective Allâ€Carbon Magnetism in Triangulene Dimers**. Angewandte Chemie, 2020, 132, 12139-12145.	2.0	23
23	On-Surface Synthesis and Characterization of Super-nonazethrene. Journal of Physical Chemistry Letters, 2021, 12, 8314-8319.	4.6	22
24	On-surface synthesis of super-heptazethrene. Chemical Communications, 2020, 56, 7467-7470.	4.1	21
25	Application of the general thermal field model to simulate the behaviour of nanoscale Cu field emitters. Journal of Applied Physics, 2015, 118 , .	2.5	18
26	Dynamic coupling of a finite element solver to large-scale atomistic simulations. Journal of Computational Physics, 2018, 367, 279-294.	3.8	18
27	<i>Ab initio</i> calculation of field emission from metal surfaces with atomic-scale defects. Physical Review B, 2019, 100, .	3.2	12
28	Onâ€Surface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids. Angewandte Chemie, 2020, 132, 1350-1355.	2.0	11
29	Atomic-resolution differential phase contrast STEM on ferroelectric materials: A mean-field approach. Physical Review B, 2020, 101, .	3.2	11
30	Common workflows for computing material properties using different quantum engines. Npj Computational Materials, 2021, 7, .	8.7	10
31	Metallic carbon nanotube quantum dots with broken symmetries as a platform for tunable terahertz detection. Applied Physics Reviews, 2021, 8, .	11.3	5
32	Reaction Pathway toward Seven-Atom-Wide Armchair Graphene Nanoribbon Formation and Identification of Intermediate Species on Au(111). Journal of Physical Chemistry C, 2020, 124, 16009-16018.	3.1	3
33	InnenrÃ1⁄4cktitelbild: Onâ€Surface Synthesis and Characterization of Triply Fused Porphyrin–Graphene Nanoribbon Hybrids (Angew. Chem. 3/2020). Angewandte Chemie, 2020, 132, 1371-1371.	2.0	2